Hyperreflexivity of Toeplitz analytic operators on the polydisc
52 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Hyperreflexivity of Toeplitz analytic operators on the polydisc

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
52 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Hyperreflexivity of Toeplitz analytic operators VLADIMIR MÜLLER and MAREK PTAK Hyperreflexivity of Toeplitz analytic operators on the polydisc VLADIMIR MÜLLER and MAREK PTAK Lille, May 31 – June 4, 2010 VLADIMIR MÜLLER and MAREK PTAK Hyperreflexivity of Toeplitz analytic operators

  • complex hilbert space

  • alg lata ?

  • vladimir müller

  • reflexive df??

  • alg lata

  • operators

  • toeplitz analytic


Sujets

Informations

Publié par
Nombre de lectures 40
Langue English

Extrait

VLADIMIRMÜLLERandMAREKPTAK

Lille,May31June4,2010

HyperreexivityofToeplitzanalyticoperators
onthepolydisc

srotarepocitylanaztilpeoTfoytivixeerrepyHKATPKERAMdnaRELLÜMRIMIDALVKATPKERAMdnaRELLÜMRIMIDALVsrotarepocitylanaztilpeoTfoytivixeerrepyH
srotarepocitylanaztilpeoTfoytivixeerrepyHKATPKERAMdnaRELLÜMRIMIDALVT
=
{
T
ϕ
:
ϕ

L

(
T
)
}A
(
D
n
)=
{
T
ϕ
:
ϕ

H

(
D
n
)
}
T
=
n
{
A

B
(
H
2
(
D
n
)):
S
j

AS
j
=
A
,
j
=
1
,...,
n
}
A
(
D
)=
A
(
S
1
,...,
S
n
)

(
S
i
f
)(
z
)=
z
i
f
(
z
)
for
f

H
2
(
D
n
)
,
i
=
1
,...,
n

T
unitcircle,
D
unitdisc,
D
n
polydisc,
B
n
unitball
H
2
(
D
n
)

L
2
(
T
n
)
,
H

(
D
n
)

L

(
T
n
)
P
H
2
(
D
n
)
:
L
2
(
T
n
)

H
2
(
D
n
)
ϕ

L

(
T
n
)
T
ϕ
f
=
P
H
2
(
D
n
)
(
ϕ
f
)
for
f

H
2
(
D
n
)

Toeplitzoperatorsonthepolydisc

KATPKERAMdnaRELLÜMRIMIDALVsrotarepocitylanaztilpeoTfoytivixeerrepyH
KATPKERAMdnaRELLÜMRIMIDALVsrotarepocitylanaztilpeoTfoytivixeerrepyHT
=
{
T
ϕ
:
ϕ

L

(
T
)
}A
(
D
n
)=
{
T
ϕ
:
ϕ

H

(
D
n
)
}
T
=
n
{
A

B
(
H
2
(
D
n
)):
S
j

AS
j
=
A
,
j
=
1
,...,
n
}
A
(
D
)=
A
(
S
1
,...,
S
n
)

(
S
i
f
)(
z
)=
z
i
f
(
z
)
for
f

H
2
(
D
n
)
,
i
=
1
,...,
n

T
unitcircle,
D
unitdisc,
D
n
polydisc,
B
n
unitball
H
2
(
D
n
)

L
2
(
T
n
)
,
H

(
D
n
)

L

(
T
n
)
P
H
2
(
D
n
)
:
L
2
(
T
n
)

H
2
(
D
n
)
ϕ

L

(
T
n
)
T
ϕ
f
=
P
H
2
(
D
n
)
(
ϕ
f
)
for
f

H
2
(
D
n
)

Toeplitzoperatorsonthepolydisc

srotarepocitylanaztilpeoTfoytivixeerrepyHKATPKERAMdnaRELLÜMRIMIDALV
srotarepocitylanaztilpeoTfoytivixeerrepyHKATPKERAMdnaRELLÜMRIMIDALVKATPKERAMdnaRELLÜMRIMIDALVsroT
=
{
T
ϕ
:
ϕ

L

(
T
)
}A
(
D
n
)=
{
T
ϕ
:
ϕ

H

(
D
n
)
}
T
=
n
{
A

B
(
H
2
(
D
n
)):
S
j

AS
j
=
A
,
j
=
1
,...,
n
}
A
(
D
)=
A
(
S
1
,...,
S
n
)

t(
S
i
f
)(
z
)=
z
i
f
(
z
)
for
f

H
2
(
D
n
)
,
i
=
1
,...,
n

aT
unitcircle,
D
unitdisc,
D
n
polydisc,
B
n
unitball
H
2
(
D
n
)

L
2
(
T
n
)
,
H

(
D
n
)

L

(
T
n
)
P
H
2
(
D
n
)
:
L
2
(
T
n
)

H
2
(
D
n
)
ϕ

L

(
T
n
)
T
ϕ
f
=
P
H
2
(
D
n
)
(
ϕ
f
)
for
f

H
2
(
D
n
)

rToeplitzoperatorsonthepolydisc

epocitylanaztilpeoTfoytivixeerrepyH
arepocitylanaztilpeoTfoytivixeerrepyH(Sarason,Halmos)
fdA
is
reexive
⇐⇒A
=
AlgLat

Lat
A
=
{L⊂H
:
A
L⊂L
forall
A
∈A}
AlgLat
A
=
{
B

L
(
H
):
Lat
A⊂
Lat
B
}
A⊂
AlgLat
A⊂
L
(
H
)

H
complexHilbertspace
B
(
H
)
algebraofallboundedlinearoperators
A⊂
B
(
H
)
subalgebrawith
I

Reexivity

srotarepocitylanaztilpeoTfoytivixeerrepyHKATPKERAMdnaRELLÜMRIMIDALVAKATPKERAMdnaRELLÜMRIMIDALVsrot
srotarepocitylanaztilpeoTfoytivixeerrepyHKATPKERAMdnaRELLÜMRIMIDALVAKATPK(Sarason,Halmos)
fdA
is
reexive
⇐⇒A
=
AlgLat

ELat
A
=
{L⊂H
:
A
L⊂L
forall
A
∈A}
AlgLat
A
=
{
B

L
(
H
):
Lat
A⊂
Lat
B
}
A⊂
AlgLat
A⊂
L
(
H
)

RH
complexHilbertspace
B
(
H
)
algebraofallboundedlinearoperators
A⊂
B
(
H
)
subalgebrawith
I

AReexivity

MdnaRELLÜMRIMIDALVsrotarepocitylanaztilpeoTfoytivixeerrepyH
KATPKERAMdnaRELLÜMRIMIDALVsrotarepocitylanaztilpeoTfoytivixeerrepyH(Sarason,Halmos)
fdA
is
reexive
⇐⇒A
=
AlgLat

Lat
A
=
{L⊂H
:
A
L⊂L
forall
A
∈A}
AlgLat
A
=
{
B

L
(
H
):
Lat
A⊂
Lat
B
}
A⊂
AlgLat
A⊂
L
(
H
)

H
complexHilbertspace
B
(
H
)
algebraofallboundedlinearoperators
A⊂
B
(
H
)
subalgebrawith
I

Reexivity

srotarepocitylanaztilpeoTfoytivixeerrepyHKATPKERAMdnaRELLÜMRIMIDALVA
srotarepocitylanaztilpeoTfoytivixeerrepyHKATPKERAMdnaRELLÜMRIMIDALVThesmallestconstant
k
iscalledthe
hyperreexiveconstant
and
denotedby
κ
A
.

α
(
A
,
A
)=
sup
k
P

AP
k
:
P

Lat
A
=
=
sup
|h
Ax
,
y
i|
:
k
x
k
=
k
y
k
=
1
,
h
Tx
,
y
i
=
0forall
T
∈A

A
is
hyperreexive
iffthereis
k
suchthatdist
(
A
,
A
)
6
k
α
(
A
,
A
)

Denition(Arveson)

d
α
i
(
s
A
t
,
(
A
A
,
)
A
6
)
d
=
isitn
(
f
A
{
,
k
A
A
)

T
k
:
T
∈A}

α
(
A
,
A
)=
sup
d
(
Ax
,
A
x
):
x
∈H
,
k
x
k
=
1

A⊂
B
(
H
)
A

B
(
H

Hyperreexivity

)KATPKERAMdnaRELLÜMRIMIDALVsrotarepocitylanaztilpeoTfoytivixeerrepyH
)KATPKERAMdnaRELLÜMRIMIDALVsrotarepocitylanaztilpeoTfoytivixeerrepyHThesmallestconstant
k
iscalledthe
hyperreexiveconstant
and
denotedby
κ
A
.

α
(
A
,
A
)=
sup
k
P

AP
k
:
P

Lat
A
=
=
sup
|h
Ax
,
y
i|
:
k
x
k
=
k
y
k
=
1
,
h
Tx
,
y
i
=
0forall
T
∈A

A
is
hyperreexive
iffthereis
k
suchthatdist
(
A
,
A
)
6
k
α
(
A
,
A
)

Denition(Arveson)

d
α
i
(
s
A
t
,
(
A
A
,
)
A
6
)
d
=
isitn
(
f
A
{
,
k
A
A
)

T
k
:
T
∈A}

α
(
A
,
A
)=
sup
d<

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents