Cet ouvrage fait partie de la bibliothèque YouScribe
Obtenez un accès à la bibliothèque pour le lire en ligne
En savoir plus

MAT242 Summary of Chapter

4 pages
MAT242 2011-2012 Summary of Chapter 1 I. Definitions 1. We say that a sequence of functions (fn)n converges pointwise on X to a function f if for every x ? X, for every > 0 there exists N ? N such that if n ≥ N then |fn(x)? f(x)| ≤ . We say that a series of functions ∑∞ n=1 fn converges pointwise on X to a function f if for all x ? X the partial sums ∑n k=1 fk converge to f(x). 2. We say that a sequence of functions (fn)n converges uniformly on X to a function f if for every > 0 there exists N ? N such that if n ≥ N then |fn(x) ? f(x)| ≤ for all x ? X, or in other words supx?X |fn(x)? f(x)| ? 0 as n?∞. We say that a series of functions ∑∞ n=1 fn converges uniformly on X to a function f if the partial sums ∑n k=1 fk converge to f(x) uniformly on x. 3. We say that a series ∑ un converges normally on X if the series ∑ supx?X |un(x)| converges.

  • ∑n

  • then

  • partial sums

  • xn does

  • x0 ?

  • fn

  • ∑∞

  • sums

  • k2 ≤

  • normal convergence


Voir plus Voir moins
MAT242 2011-2012
Summary of Chapter 1
I. Definitions 1. Wesay that a sequence of functions(fn)nconvergespointwiseonXto a functionfif for every xX, for every >0there existsNNsuch that ifnNthen|fn(x)f(x)| ≤. P We say that a series of functionsfnconvergespointwiseonXto a functionfif for all n=1 P n xXconverge tothe partiaf(x). l sums=1fk k 2. Wesay that a sequence of functions(fn)nconvergesuniformlyonXto a functionfif for every  >0there existsNNsuch that ifnNthen|fn(x)f(x)| ≤for allxX, or in other dssup worxX|fn(x)f(x)| →0asn→ ∞. P We say that a series of functionsfnconvergesuniformlyonXto a functionfif the n=1 P n nverge tof(x)uniformly onx. partial sumsk=1fkco P P eriessupx)|converges. 3. Wesay that a seriesunconvergesnormallyonXif the sxX|un( 4. For allnletfn:AR. ThesetD={xA|(fn(x))nconverges}is calleddomain of convergence. II. Theorems 1. Let(fn)nbe a sequence of continuous functions onXand letfnconverge tofuniformly, then fcontinuous. 2. Let(fn)nbe a sequence of continuous functions on the interval[a, b]that converges uniformly R RR b bb tof. Thenlimn→∞fn(x)dx= limn→∞fn(x)dx=f(x)dx. a aa P 3. Let(fn)nbe a sequence of continuous functions on the interval[a, b]such thatfnconverges R PP R b∞ ∞b on[a, b]. Thenfn(x)dx=fn(x)dx. a n=1n=1a 4. Let(fn)nbe a sequence of continuous, differentiable functions with a continuous derivative (i.e. 10 f∈ C(I)) on an intervalI= [f na, b]such that (1)fn(x0)y0, for somex0I; (2)ng uniformly; R x then if we letf(x) =y0+g(t)dt, thenfis differentiable,(fn)nconverges tofuniformly and x0 dfnd0 g(x) = limn→∞= (limn→∞fn) =f(x). dx dx 0 0 dfguniformly ofis differentiable andf=g 5. Iffnfuniformly, annn an intervalIthen onI. 1 6. ForallnNletun:IRSuppose that (1) for allbe a function.nNun∈ C(I); (2) P P 0 e seriesc rgesuniformly onI thunonve ;(3) there existsx0Isuch that the seriesun(x0) P P ∞ ∞ 0 0 converges; then(un) =u. n=0n=0n III. PointwiseConvergence 1. Howdo we show that a sequence of functionsfnconverges pointwise onX? STEP 1:We find a limit functionf. Then (i) Bydefinition. We are given anxX, we are given >0, then wefindNN(that can depend onandx) and wecheckthat ifnNthen|fn(x)f(x)| ≤. sinnx EX.The sequence of functionsfn(x) =converges pointwise tof(x) = 0onR.Let n |sinnx| 1 sinnx1 xR.Let >0.ChooseN >2. Forn > Nwe have| −0| ≤≤ ≤ √ √ nn n 1 , and hencefnfpointwise. N (ii) Bydefinition version 2. Weshowthat for allxXthe number sequence(fn(x))nconverges tof(x)is that. That |fn(x)f(x)| →0. sinnx EX.The sequence of functionsfn(x) =converges pointwise tof(x) = 0onR.Let n |sinnx| sinnx1 √ √xRhave. We| −0| ≤≤ →0, asn→ ∞and hencefnfpointwise. n nn
Un pour Un
Permettre à tous d'accéder à la lecture
Pour chaque accès à la bibliothèque, YouScribe donne un accès à une personne dans le besoin