ON THE CLASSIFICATION OF RANK TWO REPRESENTATIONS OF QUASIPROJECTIVE FUNDAMENTAL GROUPS
67 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

ON THE CLASSIFICATION OF RANK TWO REPRESENTATIONS OF QUASIPROJECTIVE FUNDAMENTAL GROUPS

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
67 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

ar X iv :m at h/ 07 02 28 7v 2 [m ath .A G] 2 7 F eb 20 07 ON THE CLASSIFICATION OF RANK TWO REPRESENTATIONS OF QUASIPROJECTIVE FUNDAMENTAL GROUPS KEVIN CORLETTE AND CARLOS SIMPSON Abstract. Suppose X is a smooth quasiprojective variety over C and ? : pi1(X,x) ? SL(2,C) is a Zariski-dense representation with quasiunipotent monodromy at infinity. Then ? factors through a map X ? Y with Y either a DM-curve or a Shimura modular stack. 1. Introduction Let X be a connected smooth quasiprojective variety over C with basepoint x. We look at representations ? : π1(X, x) ? SL(2,C). We assume throughout that the monodromy at infinity is quasi-unipotent. If X ? X is a normal-crossings compactification with com- plementary divisor D = ∑ Di, and if ?i are loops going around the components Di, this condition means that the ?(?i) are quasi-unipotent, in other words their eigenvalues are roots of unity. A representation ? is Zariski-dense if the Zariski-closure of its image is the whole group SL(2,C). A reductive representation of rank two is either Zariski-dense, or else it becomes reducible upon pullback to a finite unramified covering of X.

  • zariski

  • group action

  • dense representation

  • shimura modular

  • deligne-mumford stack

  • overlap between

  • tautological representations into

  • then ?

  • any scheme then

  • dm-curve


Sujets

Informations

Publié par
Nombre de lectures 6
Langue English

Extrait

ONTHECLQAUSASSIIFPICRAOTJIEOCNTIOVFERFUANNDKATMWEONTRAELPRGERSOEUNPTSATIONSOF

KEVINCORLETTEANDCARLOSSIMPSON

Abstract.
Suppose
X
isasmoothquasiprojectivevarietyover
C
and
ρ
:
π
1
(
X,x
)

SL
(2
,
C
)isaZariski-denserepresentationwithquasiunipotentmonodromyatinfinity.Then
ρ
factorsthroughamap
X

Y
with
Y
eitheraDM-curveoraShimuramodularstack.

1.
Introduction
Let
X
beaconnectedsmoothquasiprojectivevarietyover
C
withbasepoint
x
.Welook
atrepresentations
ρ
:
π
1
(
X,x
)

SL
(2
,
C
).Weassumethroughoutthat
themonodromy
plementarydivisor
D
=
D
i
,andif
γ
i
areloopsgoingaroundthecomponents
D
i
,this
atinfinityisquasi-unipote
P
nt
.If
X

X
isanormal-crossingscompactificationwithcom-
conditionmeansthatthe
ρ
(
γ
i
)arequasi-unipotent,inotherwordstheireigenvaluesare
rootsofunity.
Arepresentation
ρ
is
Zariski-dense
iftheZariski-closureofitsimageisthewholegroup
SL
(2
,
C
).AreductiverepresentationofranktwoiseitherZariski-dense,orelseitbecomes
reducibleuponpullbacktoafiniteunramifiedcoveringof
X
.Wewillclassifyrepresentations
ρ
whichareZariski-denseandhavequasi-unipotentmonodromyatinfinity.See[9][5][36]
[39][47]forasimilarclassificationinthereduciblecase.
Thegeometryofthefundamentalgroupofanalgebraicvarietyhasbeenstudiedfrommany
differentangles[2][4][5][6][19][22][41][53][59][62][71][97][104][105][126][128].The
methodswewilluseherearebasedonthetheoryofharmonicmappings,bothtosymmetric
spacesandcombinatorialcomplexes[26][28][35][42][46][54][60][61][65][66][69][86][91]
[113][117][118][132].
Ourclassificationisobtainedbylookingattheinterplaybetweendifferentpropertiesof
ρ
.Themainpropertyis
factorization
:wesaythat
ρ
factorsthroughamap
f
:
X

Y
ifitisisomorphictothepullbackofarepresentationof
π
1
(
Y,f
(
x
)).Thisnotioncanbe
extendedinacoupleofways,forexample
ρ
projectivelyfactors
through
f
iftheprojected
representationinto
PSL
(2
,
C
)factorsthrough
f
.Theotherextensionisthatitisconvenient
(andbasically–almostessential—tolookatthenotionoffactorizationthroughmapsto
Deligne-Mumfordstacks
Y
ratherthanjustvarieties.Inacertainsensethistakestheplace
ofcomplicatedstatementsinvolvingcoveringsof
X
.Itevensubsumesthenotionofprojective
factorization,becauseprojectivefactorizationisequivalenttofactorizationthroughanew
DM-stackobtainedbyputtingastackstructurewithgroup
Z
/
2(thecenterof
SL
(2
,
C
))
overthegenericpointof
Y
.
Keywordsandphrases.
Fundamentalgroup,Representation,Harmonicmap,Tree,Deligne-Mumford
stack,Shimuravariety.
1

2K.CORLETTEANDC.SIMPSON
Oneofthemaincasesoffactorizationweshallbeconcernedwithisfactorizationthrough
acurve.Asmoothone-dimensionalDM-stackwillbecalleda
DM-curve
.Recallthatan
orbicurve
isaDM-curvewhosegenericstabilizeristrivial.Anorbicurveisgivenbythe
dataofasmoothcurvetogetherwithacollectionofmarkedpointsassignedinteger(

2)
weights.FactorizationthroughaDM-curveisequivalenttoprojectivefactorizationthrough
anorbicurve(Corollary3.3).
Theothercaseweneedtoconsiderariseswhentherepresentationismotivic,infactcomes
fromafamilyofabelianvarieties.Thefamiliesofabelianvarietieswhosemonodromyrep-
resentationsbreakupintoranktwopiecesaregivenbymapstocertainShimuravarieties
orstacks.TheseShimuravarietiesarecloselyanalogoustoHilbertmodularvarieties.How-
ever,Hilbertmodularvarietiesparametrizeabelianvarietieswithrealmultiplication,while
ingeneralweneedtolookatabelianvarietieswithmultiplicationbyatotallyimaginary
extensionofatotallyrealfield.Theconditionthatthetautologicalrepresentationgoesinto
SL
(2)basicallysaysthattheuniversalcoveringoftheShimuravarietyisapolydiski.e.
aproductofone-dimensionaldisks.Weworkwithoutlevelstructureandcallthesethings
polydiskShimuramodularDM-stacks
.AclassicalexampleisthecaseofShimuracurves.The
preciseconstructionwillbereviewedin
§
9below.If
H
isapolydiskShimuraDM-stackthen
π
1
(
H
)hasatautologicalrepresentationinto
SL
(2
,L
)foratotallyimaginaryextension
L
of
atotallyrealfield,andthisgivesacollectionoftautologicalrepresentationsinto
SL
(2
,
C
)
indexedbytheembeddings
σ
:
L

C
.
ClassifyingourranktwoZariski-denserepresentationsquasi-unipotentatinfinity,will
consistthenofshowingthatanysuchrepresentationfactorsthroughamap
f
:
X

Y
,
with
Y
beingeitheraDM-curve,orelseapolydiskShimuramodularDM-stack.Weconsider
as“known”therepresentationsonthesetargetstacks
Y
.Theremaybesomeoverlapbetween
thesetwocases,butoneofourbasictasksistohavepropertieswhichdeterminewhichcase
oftheclassificationwewillwanttoproveforagivenrepresentation.
Sincewearelookingatrepresentationsonquasiprojectivevarieties,wedefine
rigidity
in
awaywhichtakesintoaccountthemonodromyatinfinity.Fixanormalcrossingscom-
pactificationof
X
.Foreachcomponent
D
i
ofthedivisoratinfinity,wehaveawell-defined
conjugacyclassofelementsof
π
1
(
X,x
)correspondingtoaloop
γ
i
goingaroundthatcompo-
nent.Thusforagivenrepresentation
ρ
thisgivesaconjugacyclass
C
i
inthetargetgroup.We
areassumingthatthesemonodromyelementsarequasi-unipotent,so
C
i
isaquasi-unipotent
conjugacyclass.Wecandefineanaffinevariety
R
(
X,x,SL
(2)
,
{
C
i
}
)ofrepresentationssuch
thatthemonodromies
ρ
(
γ
i
)arecontainedintheclosuresofthe
C
i
.Let
M
(
X,SL
(2)
,
{
C
i
}
)
denoteitsuniversalcategoricalquotientbytheconjugationaction.Wesaythat
ρ
is
rigid
if
itrepresentsanisolatedpointinthemodulispace
M
(
X,SL
(2)
,
{
C
i
}
)obtainedbylookingat
itsownconjugacyclasses.InthecaseofaZariski-denserepresentation,thisformofrigidity
meansthatthereisnonon-isotrivialfamilyofrepresentationsallhavingthesameconjugacy
classesatinfinity,goingthrough
ρ
(Lemma6.5).
Apropertywhichplaysasimilarrolebutwhichiseasiertostateis
integrality
.Say
thatarepresentation
ρ
is
integral
ifitisconjugate,in
SL
(2
,
C
),toarepresentation
ρ
:
π
1
(
X,x
)

SL
(2
,A
)for
A
aringofalgebraicintegers.ForZariski-denserepresentations,
thisisequivalenttoaskingthatthetraces
Tr
(
ρ
(
γ
))bealgebraicintegersforall
γ

π
1
(
X,x
).

RANKTWOREPRESENTATIONS

3

Saythat
ρ
comesfromacomplexvariationofHodgestructure
ifthereisastructureof
complexvariationofHodgestructureonthecorrespondinglocalsystem
V
.
Themainrelationshipbetweenallofthesenotionsisthefollowingfirstresult.
Theorem1.
Suppose
ρ
:
π
1
(
X,x
)

SL
(2
,
C
)
isarepresentationwithquasi-unipotent
monodromyatinfinity,suchthat
ρ
doesnotprojectivelyfactorthroughanorbicurve,or
equivalently
ρ
doesn’tfactorthroughamaptoaDM-curve.Then
ρ
isrigidandintegral.
Rigidityimpliesthat
ρ
comesfromacomplexvariationofHodgestructure.
Thisisalreadyknowninthecasewhen
X
isprojectivefrom[117]forrigidity,andfor
integralityGromov-Schoen[54],and[115],thelatterofwhichwasdesignedtosupportthe
originaldormantversionofthispaper.ThevariationofHodgestructurefollowsfrom[26],
see[113].Inthepresent,weextendtheresulttothequasi-projectivecaseforrepresentations
withquasi-unipotentmonodromyatinfinity.ThevariousstatementsinTheorem1appear
asTheorems6.8,7.3and8.1below.
TheunderlyingargumentforbothrigidityandintegralitycomesfromTheorem5.13about
harmonicmapstoBruhat-Titstrees.Thisstrategyisperhapsworthcommentingon.Ithas
itsoriginsintheworkofBassandSerre[8][108][109],Culler-Shalen[29]andGromov-Schoen
.]45[Itwouldcertainlyhavebeenpossibletotreattherigidityquestionusingharmonicmaps
tosymmetricspaces[26][38][42][44][86].Forintegrality,though,itisnecessarytousethe
theoryofharmonicmapstoBruhat-Titstrees[54].Furthermore,thereisasortofanalogy
betweenthetwonotions:integralitymeansthatarepresentationinto
SL
(2
,
Q
p
)goesinto
acompactsubgroup,whereasrigiditymaybethoughtofassayingthatarepresentation
into
SL
(2
,
C
(
t
))goesintoacompactsubgroup,muchasin[29].So,wethoughtitwou

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents