Optimal convergence analysis for the eXtended Finite Element Method
23 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Optimal convergence analysis for the eXtended Finite Element Method

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
23 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Optimal convergence analysis for the eXtended Finite Element Method Serge Nicaise 1, Yves Renard 2, Elie Chahine 3 Abstract We establish some optimal a priori error estimate on some variants of the eXtended Finite Element Method (Xfem), namely the Xfem with a cut-off function and the stan- dard Xfem with a fixed enrichment area. The results are established for the Lame system (homogeneous isotropic elasticity) and the Laplace problem. The convergence of the numerical stress intensity factors is also investigated. We show some numerical experiments which corroborate the theoretical results. Keywords: extended finite element method, error estimates, stress intensity factors. 1 Introduction Inspired by the Pufem [26], the Xfem (extended finite element method) was introduced by Moes et al. in 1999 [28, 27] for plane linear isotropic elasticity problems (Lame system) in cracked domains. The main advantage of this method is the ability to take into account the discontinuity across the crack and the asymptotic displacement at the crack tip by addition of special functions into the finite element space. It allows the use of a mesh which is independent of the geometry of the crack. This avoids the remeshing operations when the crack propagates and the corresponding re-interpolation operations which can cause numerical instabilities. In the original method, the asymptotic displacement is incorporated into the finite element space multiplied by the shape function of a background Lagrange finite element method.

  • crack tip

  • off function

  • off function verifying

  • called stress

  • linear elasticity

  • universite de valenciennes et du hainaut cambresis

  • heaviside enrichment

  • stress intensity

  • functions


Sujets

Informations

Publié par
Nombre de lectures 30
Langue English

Extrait

OptimalconvergenceanalysisfortheeXtendedFiniteElementMethodSergeNicaise1,YvesRenard2,ElieChahine3AbstractWeestablishsomeoptimalapriorierrorestimateonsomevariantsoftheeXtendedFiniteElementMethod(Xfem),namelytheXfemwithacut-offfunctionandthestan-dardXfemwithafixedenrichmentarea.TheresultsareestablishedfortheLame´system(homogeneousisotropicelasticity)andtheLaplaceproblem.Theconvergenceofthenumericalstressintensityfactorsisalsoinvestigated.Weshowsomenumericalexperimentswhichcorroboratethetheoreticalresults.Keywords:extendedfiniteelementmethod,errorestimates,stressintensityfactors.1IntroductionInspiredbythePufem[26],theXfem(extendedfiniteelementmethod)wasintroducedbyMoe¨setal.in1999[28,27]forplanelinearisotropicelasticityproblems(Lame´system)incrackeddomains.Themainadvantageofthismethodistheabilitytotakeintoaccountthediscontinuityacrossthecrackandtheasymptoticdisplacementatthecracktipbyadditionofspecialfunctionsintothefiniteelementspace.Itallowstheuseofameshwhichisindependentofthegeometryofthecrack.Thisavoidstheremeshingoperationswhenthecrackpropagatesandthecorrespondingre-interpolationoperationswhichcancausenumericalinstabilities.Intheoriginalmethod,theasymptoticdisplacementisincorporatedintothefiniteelementspacemultipliedbytheshapefunctionofabackgroundLagrangefiniteelementmethod.However,wedealalsowithavariant,introducedin[12],wheretheasymptoticdisplacementismultipliedbyacut-offfunction.Thisvariantissimilartotheclassicalsingularenrichmentmethodintroducedin1973byStrangandFix[32]butitadditionallypreservestheindependenceofthemeshtothegeometryofthecrackwhichisindeedtheessentialcontributionofXfem.AnotherclassicalmethodtotakeintoaccountasingularbehaviorofthesolutionisthedualsingularfunctionmethodintroducedbyM.Dobrowolskietal.in[5](seealso[19,10])oramorerecentvariantthesingularcomplementmethodintroducedbyP.CiarletJr.etal.in[17](foraL-shapedomain,see[29]).Thesemethodsrequiretheuseofdualsingularfunctionswhichcanbedifficulttoobtaininsomesituations(evenfortheLame´system)orquiteimpossibletoobtainwhenjusttheasymptoticbehaviorisknown(fornon-linearelasticity[2]orMindlinplatemodelforinstance).TheXfemstrategycanbeadaptedtovarioussituations.Seeamongmanyotherrefer-ences[3,6,7,8,23,25,36,37,35,38].Inparticular,afictitiousdomainmethodcanbe1Universite´deValenciennesetduHainautCambre´sis,LAMAV,FRCNRS2956,InstitutdesSci-encesetTechniquesdeValenciennes,F-59313-ValenciennesCedex9France,email:Serge.Nicaise@univ-valenciennes.fr2Correspondingauthor.Universite´deLyon,CNRSINSA-Lyon,ICJUMR5208,LaMCoSUMR5259,F-69621,Villeurbanne,France,Yves.Renard@insa-lyon.fr3LaboratoryforNuclearMaterials,NuclearEnergyandSafetyResearchDepartment,PaulScherrerInstituteOVGA/14,CH-5232VilligenPSI,Switzerland,elie.chahine@psi.ch.1
derivedfromtheprincipleofXfem(see[24,4])anditispossibletoadaptsomestrategieswhentheasymptoticbehaviorisunknnownoronlypartiallyknown(see[11,13,14]).Inthepresentpaper,weimprovetheresultsgivenin[12]concerningthevariantwhichusesacut-offfunction.WealsogivesomeadditionalerrorestimatesconcerningthestressintensityfactorsandthestandardXfem.ThetheoreticalresultsareestablishedforboththeLame´systemandtheLaplaceproblem.Somenumericalteststhatillustrateandconfirmthetheoreticalresultsarepresented.2ThemodelproblemsTheanalysiswillbeperformedonacrackeddomainΩR2fortwomodelproblems:TheLaplaceequationandtheLame´system.ThecrackΓCisassumedtobestraight.Inbothcases,theboundaryΩofΩispartitionedintoΓDNandΓC(seeFig.1).ADirichletconditionisprescribedonΓD,aNeumannoneonΓNwhileonthecrackΓCweconsideranhomogeneousNeumanncondition.Figure1:ThecrackeddomainΩ.Theweakformulationofthe(scalar)Laplaceequationonthisdomainreadsasfollows:FinduZVsuchthata(u,v)=l(v)vV,a(u,v)=u∇vdx,ZΩZ(1)l(v)=fvdx+gvdΓ,ΓΩNV={vH1(Ω);v=0onΓD}.WhiletheoneoftheLame´(vectorial)system(linearelasticityproblemonthisdomainforanisotropicmaterial)is:FinduZVsuchthata(u,v)=l(v)vV,a(u,v)=σ(u):ε(v)dx,ΩZZl(v)=fvdx+gvdΓ,ΓΩNσ(u)=λtr(ε(u))I+2(u),V={vH1(Ω;R2);v=0onΓD},Twhereσ(u)denotesthestresstensor,ε(u)=21(u+u)isthelinearizedstraintensor,2)2(
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents