An introduction to profinite groups
4 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

An introduction to profinite groups

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
4 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Niveau: Supérieur, Doctorat, Bac+8
An introduction to profinite groups Jean Lécureux February 20, 2006 These notes are intended to give a general survey about profinite groups, following [2]. While the two first parts explain the definitions and basic properties of profinite groups, the last one is intended to show how profinite groups could appear in a concrete group theoretical problem. Notation. If N is a subgroup of a topological group G, we write N < G. If N is normal, we write N / G. If N is open (resp. closed), we add a o (resp. c), to get something like N /o G. 1 Inverse limits Definition 1.1. A directed set is a partially ordered set (?,≤) such that for every ?, µ ? ?, there exists some ? ? ? such that ? ≥ ? and ? ≥ µ. Example 1.2. A totally ordered set is a directed set. Example 1.3. N? with the order given by the divisibility is a directed set. Definition 1.4. An inverse systems over a directed set ? is a family of sets (or groups, or rings, or topological spaces, or anything) G? with maps (or homomorphism, or continuous maps, or morphisms of anything), defined when ? ≥ µ, pi?µ : G? ? Gµ such that pi?? = IdG? and piµ? ? pi?µ = pi?? .

  • problem can

  • gn?n ?

  • group

  • any neighborhood

  • many terms

  • can get

  • hausdor?

  • compact hausdor? topological

  • finitely many

  • subgroup


Sujets

Informations

Publié par
Nombre de lectures 43
Langue English

Extrait

N G N <G N
N /G N N / Go c o
(Λ,≤) λ,μ∈ Λ
ν∈ Λ ν≥λ ν≥μ
∗N
Λ

λ≥ μ π : G → G π = Idλμ λ μ λλ Gλ
π ◦π =πμν λμ λν

( )
Y
limG = (g )∈ G g =π (g ) λ≤μ .λ λ λ λ μλ μ←−
λ∈Λ
np∈N Λ =N Z/p Z
n m mZ/p Z→Z/p Z p m≥ n
Z pp
p
Z/nZ n≥ 2 n
b bZ Z Zp
Z
k ∗SL (Z/pZ) k ∈ Nn
SL (Z )n p
bSL (Z) SL (Z/mZ)n n
Γ Λ
Γ (Γ/N)N∈Λ
bΓΛ
orderedsettendedlimTheis.a.directedlastset.whicExampleof1.3v.examplebasic,andiswithinthelimitsorderegivearenisbvyabtheendivisibilhitwhoseyofis.awithdirectedwset.eDenitionl1.4.ofAnfamiininclusion.vsystemerse1.6.systemshoofvniteerinagivdirectedpronisetalsotionstisreductionavfamilylimitoftosetssome(orcompletiongroups,Theorforrings,hoorsystemtopaologicalaspaces,directedortheantheything)appdeni.thesomethingwithsubgroupsmapsb(orehomomorphism,anorwhosecontegers.tinproniteuousgroupmaps,theorlimorphismsyofsystemanExampleything),pronideneddewhenvexplainthepartsfrstgroup,theyoring...wtethathewithleduloianWhsy[2].vsuccalledhisthatprowingthefolloexistsgroups,thepronitefout1.8abisanderyeyhsurvshogeneralformaerselimitgivorderedtosettendedis.group.Thealsoin1.1.vversevlimitof(sometimesInalsogroupscalled.propreviousjectivlikegrouplimit)eofofannitein,vreversequotiensystemtoisithevsubsetnite(orvsubgroup,is...)DenitionofAthegroupcartesianaprowhicductisofintheerseinmitarean'sindenedersebofygroups.:1.7notesThe.-adicategersThesenedconcreteo2006e20,eebruaryrstFogroupaL?cureuxteJean(evpsifwriteareeaw).grougroupsnormal,groups,pronite(totis),ductionthetheoreticalmotrosucallformIfin.erseproblem.stem,Notation.inIferseforisallthewriteandeequalwtheinduct,allExampleone1.5..thereLetcalledispronitegroupoological,bExamplee.agroupsprimeinntoumevbthater,andsuctopwa,ofan.vTheefamilywhoseofisquotiensettspartiallyupisexamples,subgrohaddthereforewithpronitetheWnaturalcanmapsgeteAwDenitionclosed),erse(resp.aseninoperseTheimitisallAgroups.1totallypronitebcouldyereductionGeneralisationmotheduloexamples1.2LetnbwhenevaerandExampleb.aproplyformnormalanofinindexvtersedirectedsystem,ywhoseerseinThevtserseglimit),is(resp.ertiesformofin,ersetheofringgroups,ofinanderse-adicitinnotedagiven.IfpreviousacanAn1bϕ : Γ→ ΓΛ\
ϕ(g) = (gN) NN∈Λ
N∈Λ
b bΛ Γ = ΓΛ
bΓ Γ ΓΛ
ϕ
Γ Λ
b bp Γ = Γ p ΓΛ p
b bΓ Γ = Γ Γ Γ ={1}
G = lim(G )λ λ∈Λ←−Y
G Gλ λ
Y
G Gλ
λ∈ΛY Y
U(S)∩G U(S) = G × {1} S Λ Gλ
λ6∈S λ∈S
U(S)∩ G Y
(g )∈ G (g )6∈ limG ν > μλ λ λ λ←−
π (g ) = g (g )U(μ,ν) (g )μν μ ν λ λY Y
limG limG G Gλ λ λ λ←− ←−
λ∈Λ λ∈Λ
G

G
S⊂ Λ U(S)Y
π : G→ G U(S)λ
λ∈S

G
N
G G/N G
G
N\
−1gNg G
g∈G
Λ G
b bG = lim(G/N) ϕ :G→GN∈Λ←−
normaltheallIfrselynite,thatositioneanswhicmthehneighisformayproniteengroup,ywandeseencanwgivandeetheformdiscreteindextopofologysotosubgroupseacsmhorofthethew(whicopetit,ossibleandoupendoHausdorwoedinjectivHausdorisbifenwithcthecompact,prosubgroductoptoppro-ologysubgroup.enLetprimeusorhoin.vaestigateisthethepropthatertieshaofandthisatodspWologye.aLoloemmaonite2.1is.encase,forisidentity.closedalreadyinpart.thebprowhoseducotofthisall,Inofconfusing).thebitofaen.isnitel.evAconbaseifofisneighterbconsistorhoanoNoddirectedofwhosetheLetidenhatneighitdsytitisof.givwensubsebsimplyothertheernelitjectionifsaengetevW,eofthe,simplwhereandcompletionforaorhogroupthevious.prearethetocallsecondalsotioncouldgroup.eAwalt,afacoup(inifofomppletionitsmgrobcneighb,offorof.evveryvnite"onlysubsetvproniteletofatheological.enThebasegrouptheitoisidenaFirstcompacteryHausdorIftopniologic.aoflsgroup.ExampleProareof..callareandmanwriteFeopwofindex,anissubgroupaisbasesubgroup,ofnitenetheighcompletionbcalledoallrthereforehoenothedlforetheofidensubgroupstitorderedyerseb,yvdenitionTheofathebprooductoftopidenologyy.ProLetFniteeofinnite,subgroupsnitenormalt,theeallisofnoneconsiststhatsuckhofthatproWhene..isyerneliskeIts..eyvbalreadysmthat.nite,Thereeexistarehomomorphienaformdenebasesucthehbthatoalsoofy:ideneyWisaeconstruction.no6readythisgivofawp.denicasesofparticularpronitewingPropas2.3.seentopegicexamplesgrfolloistheprisgranifoponlyenitneighcbactorhoandoopdsubofoupsinagroupaseltheaorhowhicdshthedoProesn'tWinhatersectewithprogiceotheolif"topConae,,soresiduallythateascompactgrouptoppronitegroupaopconsidersubgroupsisaclosedfinrcanneigheorhoWdsertiestheproptitological..ofByevTopycsubgrouphonois'stheorem,teop:Tis2unionetheaotrivialetsis1.9compact,Hausdor,hsoopthaSincetisinthereisonlycompactyHausdor.ytersection),them.Wurthermore,eerycanenwupsubgroupsnite.oftainsinopmorenormalprecise:iofnanourendescriptionitofoftheindex,basethatforinthesectionneighIfbtheorhoisoofdsisofandtisheopidennormaltitofy..w,Letemmab2.2the.setsTheopopnormalenofnormal,subgbrrevoinclusion.niteiofndexwaindexupsofergetoifforma.basehomomorphiforptheinisfactbdenedetheb2\
g∈ N g = 1
N/ Go
G
g
bG ϕ (g N)∈ G N ,...,NN 1 k
G N ∩N ∩···∩N1 2 k
G g N = g N NN ∩N ∩···∩N i N i i1 2 k i
g N g NN k Nk \
G g NN
N/ Go
g ϕ(g) = (G N) ϕN
ϕ G
ϕ M G V(M) = 
Y Y
b b G/N× {1} ∩G G
N6≥M N≥M
−1ϕ (V(M)) =M G ϕ

G G
lim(G/N)N/ Go←−
bG G
G
R Q Qp
b bG GΛ
bΛ G G = lim(G/N)Λ N∈Λ←−
bϕ(G) GΛ
b(g N) ∈ G (g )N N∈Λ Λ N
V(S) ={(h ) |h = g ∀N∈ S} S Λ g = gN N∈Λ N N ∩ NN∈S
ϕ(g)∈V(S)

(g ) Gi
−1N / G n = n(N) g g ∈ N i j≥ no ji
(g )i
G
{g} g∈ G N / G gN gi o
g i≥ n(N) = n g ∈ gN j≥ ni i
g ∈g N =gN (g ) gj i i

andnormalornormalwhFtradicuous.basetinthatconLetisnthatiw.shonottoofecollectionvvha.onlyoeywofHausdor,yompactthecclosed,is.Since.homeomorphism.setformofaanbase.of.neighebe,orhoyoldof.ofbtheidenidenttitdysoinwaneiscollection,.andinwoneforhabvweandthatalsothatnow,shooftothatremainstoyHausdor.nl2.6.oeItonite.aisthatopeensuchintheecan,csoncethatustsurjectivSuppistermconthetinauous..isneighInsubgroupsfact,thewstseehaFvweIfprvoavTheedyaislittleallmoreof.thaninthe,propthaositiony:oifhathattainsistheaofproniteopgroup,thenthenalwsopisatopbologicallyniteisomorphic.tosurjectivshoshohiscthatwhie,thateriesPropvetrsectionhteseinathisoupinit.seThistheshoeverywsathatttheideneofxabmforplesandw,eycanges.getthewithnitelytheitmethoendconstangivitenmanabThen,ocompactvseteoarepthebonlytheones..Rorhoemarkof2.4tains.yWopetherecalledtheerywithEvbthecase,"proniteeaccompletion"ereofha.in.,opwsthemThisyofconniteergesandtheareen.TheThenruenceemptproblemisquitedensementheapproacofofProsLetcantersectietheinsoOurallgoaltiseevAntoneigheorhoslidhvglimpseeitsconbutatoofpformain,wsubgroupproblemenbanreformisin,ofsubgroupsgroups.rmthisenmetric,ofinnitesameiswIfaeingyythatsubsetw.eLetcane.getisnon-emptwortoisItthateasyasseecompletionseofhaimpliesW.isInfactfact,theitositioncanLbteconshobwnathatquencofinypr,grandwhicinIffactisevCauchyeryquenccompacitinthesensethatfor,,areiitherndeedexistscompletions,conintitatheslithatgdshorhotlyneighmoreallgeneralalwthataseey:etheythenare,completionstitwonveriProthIfrespsequeecthastomanaterms,uniformmsevtructuretually(forecomemoret.details,oseseehas[1],nnitelycyhapters.3,since?3).isWithoutHausdor,givinginnitefurthertheexplanations,dswhaselimitcanoinstillorhogineighvLetefortawTheobpropoositareionsof:conPropinnitelositionman2.5.ofLenet,sothatbexienormalaSinceset6ofsomenorwithmalouldsuthereb.groroupshofnota,greoupv,we.itistersection,.injectivLeetwhicinshoythatnon-emptohaswouldvsupptoose.w3econgalreadysubgrouphaAveleetaryahtopthiologyproblemandbevfounden[3].amainmetrichereonotnenabgivforthewhicghtestitofissolution,notrathercomplete,exandlthathowtheecantakeeulatedthetermscompletionpronitefor3SL (Z)n
SL (Z)→SL (Z/mZ) K(m)n n
K(m)
bZ
bSL (Z) SL (Z)n n
∼SL (Z) → SL (Z/mZ) SL (Z/mZ) =n n n
bSL (Z)/K(m) SL (Z) SL (Z/mZ)n n n
SL (Z)/K(m)n
\SL (Z) SL (Z)n n
b \SL (Z) SL (Z)n n
SL (Z)n
K(m)
Y
\ bSL (Z)→ SL (Z) SL (Z)/N→n n n
N/SL (Z)nY
SL (Z/mZ)n
m∈N
Z K
Z K
SLn
SL2
\ bSL (Z)→ SL (Z) SLn n 2
n≥ 3
Z
eenaivdoquestiumitseeastproblemltoat,-or[2]problemksubgroupcancongruenceOneThebindex.knitehecofhsubgroupsanormalcantheemarkallthat.entheevthe.e,orerysubgroups,tarynormalroupthewhetheralllinky2.aone,bTeing,the2ndprothejectivyenitelimitfact,ofhthengwastegersthiwythatbsomegetTheeis,wev,en,itatiserifyalso(evthemorphismprosubgroupjectivisefactlimitfreeofer,theringthatwteethingsguarang?n?rno.F.isD.thereger,ourevnwwing:Hoe.outWIseinnite?could.alsocongrue

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents