Cet ouvrage fait partie de la bibliothèque YouScribe
Obtenez un accès à la bibliothèque pour le lire en ligne
En savoir plus

Spinc Structures on Manifolds and Geometric Applications

De
20 pages
Spinc Structures on Manifolds and Geometric Applications Roger NAKAD April 10, 2012 Max Planck Institute for Mathematics Vivatsgasse 7, 53111 Bonn Germany E-mail: Abstract In this mini-course, we make use of Spinc geometry to study special hyper- surfaces. For this, we begin by selecting basic facts about Spinc structures and the Dirac operator on Riemannian manifolds and their hypersurfaces. We end by giving a Lawson type correspondence for constant mean curvature surfaces in some 3-dimensional Thurston geometries. Contents 1 Introduction and motivations 2 2 Algebraic facts 3 3 Spinc structures and the Dirac operator 5 4 Examples and remarks 8 5 The Schrodinger-Lichnerowicz formula 10 6 Hypersurfaces of Spinc manifolds 12 7 Geometric applications 14 1

  • e1 ·

  • riemannian manifold

  • curvature equal

  • dimensional manifold

  • mean curvature

  • compact riemannian

  • manifolds carrying real

  • constant mean


Voir plus Voir moins
SpincStructuresonManifoldsandGeometricApplicationsRogerNAKADApril10,2012MaxPlanckInstituteforMathematicsVivatsgasse7,53111BonnGermanyE-mail:nakad@mpim-bonn.mpg.deAbstractInthismini-course,wemakeuseofSpincgeometrytostudyspecialhyper-surfaces.Forthis,webeginbyselectingbasicfactsaboutSpincstructuresandtheDiracoperatoronRiemannianmanifoldsandtheirhypersurfaces.WeendbygivingaLawsontypecorrespondenceforconstantmeancurvaturesurfacesinsome3-dimensionalThurstongeometries.Contents1Introductionandmotivations2Algebraicfacts3SpincstructuresandtheDiracoperator4Examplesandremarks5TheSchro¨dinger-Lichnerowiczformula6HypersurfacesofSpincmanifolds7Geometricapplications12358012141
1IntroductionandmotivationsHavingaSpinorSpincstructureonaRiemannianmanifold(Mn,g),wecandefineanaturalfirstorderellipticdifferentialoperatorcalledtheDiracoperator.Itactsonspinorfields:sectionsofacomplexvectorbundleΣMcalledthespinorbundle.ThegeometryandtopologyofaRiemannianSpinorSpincmanifoldandtheirsubmanifoldsarestronglyrelatedtothespectralpropertiesofthisoperator.OnacompactRiemannianSpinmanifold(Mn,g)ofpositivescalarcurvature,A.Lichnerowicz[Lich63]provedthatanyeigenvalueλoftheDiracoperatorDsatisfies1λ2>infScal,4MwhereScaldenotesthescalarcurvatureof(Mn,g).Then,thekerneloftheDiracoperatoristrivialandbytheAtiyah-Singertheorem,thetopologicalindexofMniszero.Thisyieldsatopologicalobstructionfortheexistenceofpositivescalarmetrics.Th.Friedrich[Fri80]refinedtheargumentofA.Lichnerowiczandprovedthatnλ2infScal.4(n1)MTheequalitycaseischaracterizedbytheexistenceofarealKillingspinor.Theexistenceofsuchspinorsleadstorestrictionsonthemanifold.Forexample,themanifoldisEinsteinandindimension4,ithasconstantsectionalcurvature.TheclassificationofsimplyconnectedRiemannianSpinmanifoldscarryingrealKillingspinors[Ba¨r93]gives,insomedimensions,otherexamplesthanthesphere.TheseexamplesarerelevanttophysicistsingeneralrelativitywheretheDiracoperatorplaysacentralrole.Fromanextrinsicpointofview,Th.Friedrich[Fri98]characterisedsimplycon-nectedsurfacesisometricallyimmersedinR3bytheexistenceofaspinorfieldsatisfyingtheDiracequation.Indeed,M2isasimplyconnectedSpinsurface(M2,g),R3carryingaspinorfieldϕofconstantnorm.ofmeancurvatureHsatisfying=|{z}TheDiracequationThespinorfieldϕistherestrictiontothesurfaceMofaparallelspinoronR3.AsimilarresultholdsforsurfacesinS3andH3[Mor05].Asanapplication,wehaveanelementaryproofofaLawsontypecorrespondence.H.B.Lawsonprovedacorrespon-dencebetweensurfacesofconstantmeancurvatureinR3,S3andH3:everysimplyconnectedminimalsurfaceinS3(resp.inR3)isisometrictoasimplyconnectedsur-faceinR3(resp.H3)withconstantmeancurvatureequalto1.In2001,O.Hijazi,S.MontielandX.Zhang[HMZ01a,HMZ01b]provedthatthefirstpositiveeigenvalueof2
Un pour Un
Permettre à tous d'accéder à la lecture
Pour chaque accès à la bibliothèque, YouScribe donne un accès à une personne dans le besoin