A generalised fixed point theorem of presic type in cone metric spaces and application to markov process
8 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

A generalised fixed point theorem of presic type in cone metric spaces and application to markov process

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
8 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

A generalised common fixed point theorem of Presic type for two mappings f : X → X and T: X k → X in a cone metric space is proved. Our result generalises many well-known results. 2000 Mathematics Subject Classification 47H10 A generalised common fixed point theorem of Presic type for two mappings f : X → X and T: X k → X in a cone metric space is proved. Our result generalises many well-known results. 2000 Mathematics Subject Classification 47H10

Informations

Publié par
Publié le 01 janvier 2011
Nombre de lectures 0
Langue English

Extrait

Georgeet al.Fixed Point Theory and Applications2011,2011:85 http://www.fixedpointtheoryandapplications.com/content/2011/1/85
R E S E A R C H
Open Access
A generalised fixed point theorem of Presic type in cone metric spaces and application to Markov process Reny George1,2*, KP Reshma2and R Rajagopalan1
* Correspondence: renygeorge02@yahoo.com 1Department of Mathematics, College of Science, Al-Kharj University, Al-Kharj, Kingdom of Saudi Arabia Full list of author information is available at the end of the article
Abstract A generalised common fixed point theorem of Presic type for two mappingsf:X® XandT: Xk®Xa cone metric space is proved. Our result generalises many well-in known results. 2000 Mathematics Subject Classification 47H10 Keywords:Coincidence and common fixed points, cone metric space; weakly compatible
1. Introduction Considering the convergence of certain sequences, Presic [1] proved the following: Theorem 1.1.Let(X,d)be a metric space,k a positive integer,T: Xk®X be a map-ping satisfying the following condition:
d T x1,x2,. . .,xk,T x2,x3,. . .,xk+1q1·d x1,x2+q2·d x2,x3+· · ·+qk·d xk,xk+1(1:1) where x1,x2, ...,xk+1arbitrary elements in X and qare 1,q2, ...,qkare non-negative constants such that q1+q2+ ∙ ∙ ∙+ qk< 1.Then,there exists some xÎX such that x= T(x,x, ...,x).Moreover if x1,x2, ...,xkarbitrary points in X and for nare ÎN xn+k=T (xn,xn+1, ...,xn+k-1),then the sequence<xn>is convergent and lim xn=T(lim xn,lim xn, ...,lim xn). Note that fork= 1 the above theorem reduces to the well-known Banach Contrac-tion Principle. Ciric and Presic [2] generalising the above theorem proved the following: Theorem 1.2.Let(X,d)be a metric space,k a positive integer,T: Xk®X be a map-ping satisfying the following condition:
d T x1,x2,. . .,xk,T x2,x3,. . .,xk+1λ.max{d x1,x2,d x2,x3,. . .d xk,xk+1(1:2) where x1,x2, ...,xk+1are arbitrary elements in X andlÎ(0,1).Then,there exists some xÎX such that x=T(x,x, ...,x).Moreover if x1,x2, ...,xkare arbitrary points in X and for nÎNxn+k=T(xn,xn+1, ...,xn+k-1),then the sequence<xn>is convergent and lim xn=T(lim xn,lim xn, ...,lim xn).If in addition T satisfies D(T(u,u, ...u),T(v,v, ... v)) <d(u,v),for all u,vÎX then x is the unique point satisfying x=T(x,x, ...,x).
© 2011 George et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents