//img.uscri.be/pth/0e45ac035046519192c5e94156fe5e3b0df2a2eb
Cet ouvrage fait partie de la bibliothèque YouScribe
Obtenez un accès à la bibliothèque pour le lire en ligne
En savoir plus

A generic science operation planning concept for planetary missions and its implementation on the First ESA Lunar Mission SMART-1 [Elektronische Ressource] / vorgelegt von Mehran Sarkarati

De
125 pages
A Generic Science Operation Planning Concept for Planetary Missions and its Implementation on the First ESA Lunar Mission SMART-1 vorgelegt von Diplom-Ing. Mehran Sarkarati Von der Fakultät V - Verkehrs- und Maschinensysteme der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften Dr. -Ing. genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Dieter Peitsch Berichter: Prof. Dr.-Ing. Klaus Brieß Berichter: Dr. Gerhard Schwehm Tag der wissenschaftlichen Aussprache: 26.11.2009 Berlin 2010 D 83 This page is intentionally left blank 2Erklärung Hiermit erkläre ich an Eides statt, dass ich die Dissertation selbständig verfasst habe; die von mir benutzten Hilfsmittel und Quellen sind aufgeführt und die Arbeit ist nicht in Zusammenarbeit mit anderen Wissenschaftlern oder Wissenschaftlerinnen erstellt worden. Berlin, den ____________________________________ Mehran Sarkarati Declaration of Authorship The dissertation thesis I am submitting is entirely my own work except where otherwise indicated. I have clearly signalled the presence of quoted or paraphrased material and referenced all sources. ____________________________________ Mehran Sarkarati 3 This page is intentionally left blank 4Acknowledgement I would like to express my sincere gratitude towards Prof. Dr.
Voir plus Voir moins




A Generic Science Operation Planning Concept
for Planetary Missions and its Implementation on
the First ESA Lunar Mission SMART-1




vorgelegt von
Diplom-Ing.
Mehran Sarkarati


Von der Fakultät V - Verkehrs- und Maschinensysteme
der Technischen Universität Berlin
zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften
Dr. -Ing.

genehmigte Dissertation



Promotionsausschuss:

Vorsitzender: Prof. Dr. Dieter Peitsch
Berichter: Prof. Dr.-Ing. Klaus Brieß
Berichter: Dr. Gerhard Schwehm


Tag der wissenschaftlichen Aussprache: 26.11.2009





Berlin 2010
D 83






This page is intentionally left blank
2Erklärung

Hiermit erkläre ich an Eides statt, dass ich die Dissertation selbständig verfasst habe; die von mir
benutzten Hilfsmittel und Quellen sind aufgeführt und die Arbeit ist nicht in Zusammenarbeit mit
anderen Wissenschaftlern oder Wissenschaftlerinnen erstellt worden.

Berlin, den

____________________________________
Mehran Sarkarati








Declaration of Authorship

The dissertation thesis I am submitting is entirely my own work except where otherwise
indicated. I have clearly signalled the presence of quoted or paraphrased material and referenced
all sources.


____________________________________
Mehran Sarkarati
3








This page is intentionally left blank
4Acknowledgement

I would like to express my sincere gratitude towards Prof. Dr. Klaus Brieß for his guidance and
advice. I thank him especially for his continuous support and for encouraging me to accomplish
this work despite the difficulties, related to being located in different countries and the
commitments of my professional duties.
I would also like to thank Dr. Gerhard Schwehm for his scientific support and for giving me the
opportunity of carrying out this work in the unique environment of the Research and Scientific
Support Department of the European Space Agency, ESA.
At last but not least I would like to thank Mr. David Frew and Mr. Miguel Almeida and
acknowledge their role in the definition of a more consolidated science operation concept for the
SMART-1 mission, which has contributed to the concept and ideas, represented in this work.







Dedication
This work is dedicated to my wife, Susanne, who always supported and encouraged me
throughout all stages of my educational and my personal life.
5








This page is intentionally left blank
6Acronyms
Acronym Description
AI Artificial Intelligence
ASCII American Standard Code for Information Interchange
EPS Experiment Planning System
EJB Enterprise Java Bean
ECSS European Cooperation on Space Standardization
ESA European Space Agency
ESOC European Satellite Operation Centre
ESTEC European Space Technology Centre
ESAC European Space Astronomy Centre
GSP General Study Program
ITL Input Timeline
Java EE Java Enterprise Edition
JSP Java Server Page
MAPPS Mapping and Planning Payload Science software
MMI Man-Machine-Interface
MOC Mission Operation Centre
MSP Master Science Plan
POR Payload Operation Request
PTB Project Test Bed
PTR Pointing Type Request
SAP Science Activity Plan
SOC Science Operation Centre
SOPS Science Operation Planning System
SQL Structured Query Language
SETG Tailoring of ECSSSoftware Engineering Standards for Ground Segments
in ESA
SMART Small Missions for Advanced Research in Technology
STOC Science and Technology Operation Centre
XML Extendable Mark-up Language
7Table of Contents
1 Introduction............................................................................................................................................................10
2 Background............................................................................................................................................................12
3 A Generic Science Operation Planning Concept ..................................................................................................15
4 The Decentralised Science Operations Planning Concept....................................................................................15
5 The Centralised Science Operations Planning Concept .......................................................................................20
6 Data Flow Perspective of science operation planning concepts...........................................................................25
7 Science Driven Planning .......................................................................................................................................28
8 Four ESA Planetary Missions One Generic Planning Concept............................................................................31
9 SMART-1 Science Operation Planning System, SOPS .......................................................................................33
9.1 SELECTION OF THE IMPLEMENTATION TECHNOLOGY FOR SMART-1 SOPS ..............................................38
9.2 THE DATA MODEL FOR CENTRALISED SCIENCE OPERATION PLANNING ....................................................43
9.3 IMPLEMENTATION OF THE SCIENCE OPERATION PLANNING DATA MODEL ...................................................52
9.4 IMPLEMENTATION OF THE KNOWLEDGEBASE CLIENTS ...............................................................................57
9.5 IMPLEMENTATION OF THE SCIENCE OPERATIONS PLANNING CLIENT .........................................................63
9.5.1 Science Opportunity Analyser ................................................................................................................65
9.5.2 Science Operations Planner ...................................................................................................................74
9.5.3 Science Assessment and Tracking Component.......................................................................................91
9.6 SOPS INTERFACES TO OTHER SYSTEMS .......................................................................................................95
9.7 DOCUMENTATION OF THE SYSTEM...............................................................................................................98
9.8 VALIDATION OF THE SYSTEM .......................................................................................................................99
10 Automation vs. Autonomy ..................................................................................................................................103
11 SOPS Revisited....................................................................................................................................................105
11.1 CHALLENGES AND LESSONS LEARNT.........................................................................................................105
11.2 OUTSTANDING WORK.................................................................................................................................107
12 Potential Reuse of the system..............................................................................................................................112
13 Conclusion ...........................................................................................................................................................113
Appendix 1 – Example of an Event File.......................................................................................................................115
Appendix 2 – Example of an Event Driven ITL File ...................................................................................................116
Appendix 3 – Example of a Pointing Type Request File .............................................................................................117
Appendix 4 – Related Publications by the Author in Scientific Conferences and Journals........................................119
References......................................................................................................................................................................123
8






This page is intentionally left blank
91 Introduction
The generic term “Spacecraft Operations” comprises all activities, necessary for planning and
performing the operations of a spacecraft, in order to achieve the defined objectives of its
mission. The following cited introduction to the ECSS-70-PartA standard of the European
1Committee for Space Standardisation [ ] defines concisely the critical role and underlines the
importance of the spacecraft operations in the overall architecture of a space system:
“Ground systems and operations are key elements of a space system and as such play an essential
role in achieving mission success. Mission success is defined here as the achievement of the
target mission objectives as expressed in terms of the quantity, quality and availability of
delivered mission products and services within a given cost envelope.
Mission success requires successful completion of a long and complex process covering the
definition, design, implementation, validation, in flight operations and post operational activities,
involving both the ground segment and also space segment elements.”
The ground-based activities in this context comprise a vast number of tasks, including the setup
1and operation of ground stations, development of mission data systems , preparation of flight and
ground operation procedures, generation and uplink of operational mission timelines,
performance of all spacecraft maintenance activities, downlink of the telemetry data and
spacecraft health monitoring, post-processing of the retrieved telemetry and production of the
final mission data products as well as setup and maintenance of data archive and data distribution
systems for providing the mission data products to end-users, mission run-down activities and
generation of extensive mission documentation.
The above list is by no means complete and shall only outline the extent of the required ground
segment activities for successful spacecraft operations. Among these activities the preparation of
the operational mission timelines in general and planning the activities of scientific payload
instruments of a planetary mission in particular shall constitute the main subject of the present
dissertation. The task of science operations planning is an integral element of the overall
spacecraft operations process and can therefore not be considered in isolation from other
spacecraft operation activities.
The concentration on ESA planetary missions in the present work shall allow us to contemplate a
still generic category of space missions, which has been receiving an ever growing interest in the

1 Mission Data System is the generic term applied to all software system involved in space operations ground
segment, such as Mission Control Systems, Mission Planning Systems and various simulators.
10