La lecture en ligne est gratuite
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
Télécharger Lire

Aerodynamic optimisation of highly loaded turbine cascade blades for heavy duty gas turbine applications [Elektronische Ressource] / Pasquale Cardamone

De
151 pages
Universität der Bundeswehr München Fakultät für Luft- und Raumfahrttechnik Institut für Strahlantriebe Aerodynamic Optimisation of Highly Loaded Turbine Cascade Blades for Heavy Duty Gas Turbine Applications Dipl.-Ing. Pasquale Cardamone Vollständiger Abdruck der bei der Fakultät für Luft- und Raumfahrttechnik der Universität der Bundeswehr München zur Erlangung des akademischen Grades eines Doktor Ingenieurs (Dr.-Ing.) genehmigten Dissertation Vorsitzender: Prof. Dr. sc. math. Kurt Marti 1. Berichterstatter: Prof. Dr. rer. nat. Michael Pfitzner 2. Berichterstatter: Prof. Dr.-Ing. Francesco Martelli Tag der Einreichung: 04.10.2005 Tag der Annahme: 25.01.2006 Tag der Promotion: 03.02.2006 I Preface This thesis is based on the investigations carried out during my activity as research engineer at the “Institute of Jet Propulsion” of the “University of the German Armed Forces Munich”. I am truly grateful to Prof. Dr.-Ing. Leonhard Fottner, head of the “Institute of Jet Propulsion” until June 2002, because he gave me the opportunity to carry out this work. I will never forget his professional competence, guidance and support as well as the familiar atmosphere that he established as chief professor at the Institute. He unexpectedly passed away on June 21, 2002. Prof. Dr. rer. nat.
Voir plus Voir moins


Universität der Bundeswehr München
Fakultät für Luft- und Raumfahrttechnik
Institut für Strahlantriebe





Aerodynamic Optimisation of
Highly Loaded Turbine Cascade Blades
for Heavy Duty Gas Turbine Applications




Dipl.-Ing. Pasquale Cardamone




Vollständiger Abdruck der bei der
Fakultät für Luft- und Raumfahrttechnik
der Universität der Bundeswehr München
zur Erlangung des akademischen Grades eines


Doktor Ingenieurs (Dr.-Ing.)


genehmigten Dissertation




Vorsitzender: Prof. Dr. sc. math. Kurt Marti
1. Berichterstatter: Prof. Dr. rer. nat. Michael Pfitzner
2. Berichterstatter: Prof. Dr.-Ing. Francesco Martelli




Tag der Einreichung: 04.10.2005
Tag der Annahme: 25.01.2006
Tag der Promotion: 03.02.2006


I
Preface
This thesis is based on the investigations carried out during my activity as research engineer
at the “Institute of Jet Propulsion” of the “University of the German Armed Forces Munich”.
I am truly grateful to Prof. Dr.-Ing. Leonhard Fottner, head of the “Institute of Jet Propulsion”
until June 2002, because he gave me the opportunity to carry out this work. I will never forget
his professional competence, guidance and support as well as the familiar atmosphere that he
established as chief professor at the Institute. He unexpectedly passed away on June 21, 2002.
Prof. Dr. rer. nat. Michael Pfitzner, head of the “Institute of Thermodynamics” of the
“University of the German Armed Forces Munich” is gratefully acknowledged for taking over
the supervision of the present work after the death of Prof. Fottner. The beneficial suggestions
of Prof. Pfitzner are thankfully acknowledged. I would like to thank Prof. Dr.-Ing. Francesco
Martelli, chief of the “Turbomachinery Energy and Environment Group” of the Department
of Energetics “Sergio Stecco” of the University of Florence, who kindly agreed to be part of
the board of examiners of the present thesis. His valuable advices are thankfully
acknowledged. Prof. Dr. Sc. Math. Kurt Marti is kindly acknowledged for being the chairman
of the examination board of this thesis. Dr.-Ing. Michael Lötzerich of ALSTOM Power, is
thankfully acknowledged for the valuable discussions and his precious suggestions during the
development of the present work.
I would like to thank all the colleagues of the Institute of Jet Propulsion for the many
interesting discussions (not only) on turbomachinery and for the years spent together in a
motivating and friendly atmosphere. In particular I would like to thank Dr.-Ing. Peter Müller
for the detailed work of revision and for the precious suggestion, which contributed to the
successful conclusion of this work. For their support I would like to thank all the students
who worked intensively within their thesis at the development of the present work.
The present investigations were mainly performed within the German research project “CO 2
armes Kraftwerk. 500 MW auf einer Welle” of the research programme “AGTURBO II”. The
funding by the German Federal Ministry of Economics and Labour (BMWA) and ALSTOM
Power is gratefully acknowledged. For supporting the printing of this work (see
Cardamone, 2006) the University of the German Armed Forces Munich is thankfully
acknowledged as well.
Last but not least I would like to thank my family: my parents, who encouraged my choice to
do this experience in Germany and my wife Katrin for her encouragement and her patience
also in difficult moments and for being always at my side during these beautiful years spent in
Munich. I am sure that without her support, this work would not have been possible.

Munich, February 2006 Pasquale Cardamone II









to Professor Leonhard Fottner


Contents III
Contents

Nomenclature
Abstract
1. Introduction...............................................................................1
2. Scientific background and motivation....................................7
2.1 Boundary layer development on turbo machinery blade profiles................................ 8
2.2 The choice of the optimal turbine blade profile velocity distribution ....................... 13
2.3 Automation possibilities of the aerodynamic blade design process .......................... 21
2.4 Recent progress in the field of the automatic aerodynamic blade design methods ... 25
3. Experimental investigations...................................................36
3.1 The reference turbine cascades T150, T151 and T152.............................................. 36
3.2 The High Speed Cascade Wind Tunnel..................................................................... 39
3.3 Measurement section set up....................................................................................... 41
3.4 Measurement techniques and data evaluation............................................................ 43
3.5 Measurement programme..........................................................................................46
3.6 Experimental results and discussion .......................................................................... 47
4. Numerical optimisation environment...................................58
4.1 The Parametric geometry generator PROGEN.......................................................... 59
4.2 Flow computations procedure.................................................................................... 61
4.2.1. The automatic grid generation method GRIDMOD ........................................ 61
4.2.2. The Navier-Stokes flow solver TRACE........................................................... 68
4.2.3. The automatic evaluation procedure AUSWERT............................................ 71
4.3 Validation of the flow solver ..................................................................................... 77
4.4 Optimisation techniques.............................................................................................82
4.4.1. Multi-Island-Genetic algorithm........................................................................83 IV Contents
4.4.2. Adaptive Simulated Annealing ........................................................................ 84
4.5 Set up of the objective function and constraints ........................................................ 86
5. Results and discussion ............................................................93
5.1 Validation of the procedure at different aerodynamic loadings................................. 95
5.1.1. Results at the spacing of turbine cascade blade T151...................................... 97
5.1.2. of ade blade T150.................................... 104
5.1.3. Optimisation results at varied blade spacing.................................................. 108
5.1.4. Modification of the geometrical and mechanical constraints......................... 109
5.2 Influence of the trailing edge on the aerodynamic behaviour.................................. 111
6. Summary and conclusions ...................................................117
7. Annex......................................................................................121
8. References..............................................................................124

Nomenclature V
Nomenclature
Symbols
a [m/s] Velocity of sound
α [°] Blade metal angle
b Generic variable, generic constraint
β [°] Angle
B Constraints vector
C [-] Generic constant
C [-] Wall shear stress f
C [-] Aerodynamic lift coefficient L
d [m] Profile thickness
2 2D [m /s ] Destruction term at the wall w
[m] Boundary layer edge δ
δ⎛⎞
=−⎡⎤1 ρρuu⋅dy [m] Boundary layer displacement thickness ⎜⎟ ()( )δ ∫ EE⎣⎦1⎝⎠0
δ
[m] Boundary layer momentum thickness =⋅ρρuu1/−uu⋅dyδ ()( )∫ EEE20
e [m] Cascade opening at the throat
e [m] Distance of the wake traversing plane from the cascade exit plane M
E [-] Internal energy
2 3ε [m /s ] Dissipation rate
f Generic function
f Auxiliary function for the transition model t
F Objective function
g Probability density (generating function of ASA-algorithms)
γ [°] blade wedge angle
h Probability density (acceptance function of ASA-algorithms)
H [-] Form factor =δδ ()12 12
l, L [m] Chord
κ [-] Isentropic exponent
2 2k [-]; [m /s ] Profile curvature; Turbulent Kinetic Energy VI Nomenclature
Ma [-] Mach Number
2ν [m /s] Kinematical viscosity
2ν [m /s] Eddy viscosity T
p [Pa] Pressure
p Probability
r [m] Radius
3ρ [-]; [kg/m ] Aspect ratio of the profile curvature; Density
Re [-] Reynolds number
σ [-] Aspect ratio of the profile slope
t [m] Pitch
T [K]; [-] Temperature; ASA algorithm parameter “temperature”
Tu [-] Turbulence intensity
U [m/s] Flow velocity
x Generic design variable
X Design variables vector
+y [-] Dimensionless wall distance
w [°]; [m/s] blade tangent angle; flow velocity
-1 -1ω [s ]; [s ] Specific dissipation rate; Vorticity
ζ [-] Total pressure loss coefficient

Subscripts, Superscripts
* Sonic state
1 Inlet
2 Exit
ax Axial
crit Critical
E Boundary layer edge
hk, H Trailing edge
i Generic quantity Nomenclature VII
Infl Inflection
Is Isentropic
K Tank (Kammer)
met Metal angle
N Nose
r clockwise direction on the blade
Ref Reference
s, SG Stagger
t Total
th theoretic
u local tangential position in the wake measurement plane
Umg Environment (Umgebung)
v counter-clockwise direction on the blade

Abbreviations
AG TURBO German National Research Association on Turbomachines
(Arbeitsgemeinschaft Turbomaschinen)
ANN Artificial Neural Network
ASA Adaptive Simulated Annealing
AVDR Axial Velocity Density Ratio ( ρ w sin β / ρ w sin β ) 2 2 2 1 1 1
BMWA Federal Ministry of Economics and Labour (Bundesministerium für
Wirtschaft und Arbeit)
CFD Computational Fluid Dynamics
CTA Constant Temperature Anemometry
DLR German Aerospace Center (Deutsches Zentrum für Luft- und
Raumfahrt)
DM Turbulence model destruction term by Menter
HFA Hot Film Anemometer
HGK High Speed Cascade Wind Tunnel (Hochgeschwindigkeits-
Gitterwindkanal) VIII Nomenclature
HP High Pressure
IEA International Energy Agency
FSTI Free Stream Turbulence Intensity
GA Genetic Algorithm
LE Leading Edge
MIGA Multi Island Genetic Algorithm
MUSCL Monotone Upstream Scheme for Conservation Laws
NAG Numerical Algorithm Group
OEM Original Equipment Manufacturer
PS Pressure Side
RAM Reliability, Availability, Maintainability
RANS Reynolds Averaged Navier Stokes
RMS Root Mean Square
SA Simulated Annealing, Spalart-Allmaras turbulence model
SA2 Two layers version of the Spalart-Allmaras turbulence model
SAL Low Reynolds version of the Spalart-Allmaras turbulence model
SKE Secondary Kinetic Energy
SQP Sequential Quadratic Programming
SS Suction Side
TBC Thermal Barrier Coating
TE Trailing Edge
TRACE Turbomachinery Research Aerodynamic Computational Environment
TVD Total Variation Diminishing
UniBwM University of the German Armed Forces Munich (Universität der
Bundeswehr München)
VKI Von Karman Institute
WINPANDA Windows Software for the automatic measurement and evaluation of
the cascade wake and profile pressure distribution (WINdows
Programm zur Automatisierung von Nachlauf- und
Druckverteilungsmessungen inkl. Auswertung)