Amphiphilic block copolymers as templates for particle formation and positioning [Elektronische Ressource] / vorgelegt von Błażej Gorzolnik
186 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Amphiphilic block copolymers as templates for particle formation and positioning [Elektronische Ressource] / vorgelegt von Błażej Gorzolnik

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
186 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Amphiphilic Block Copolymers as Templates for Particle Formation and Positioning Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch- Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Ingenieur B ła żej Gorzolnik aus Warszawa, Polen Berichter: Universitätsprofessor Dr. rer. nat. Martin Möller Universitätsprofessor Dr. rer. nat. Walter Richtering Tag der mündlichen Prüfung: 12. 11. 2007 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

Informations

Publié par
Publié le 01 janvier 2007
Nombre de lectures 12
Langue English
Poids de l'ouvrage 11 Mo

Extrait






Amphiphilic Block Copolymers
as Templates for Particle Formation and Positioning






Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-
Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Ingenieur
B ła żej Gorzolnik
aus Warszawa, Polen

Berichter: Universitätsprofessor Dr. rer. nat. Martin Möller
Universitätsprofessor Dr. rer. nat. Walter Richtering


Tag der mündlichen Prüfung: 12. 11. 2007


Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Table of Contents

Chapter 1 Introduction 1

Chapter 2 Literature overview:
Inorganic cluster nanoarrays by molecular templating 5
Block copolymers via anionic polymerization 26


Chapter 3 Control of long-range ordering in block copolymer micellar
monolayers 43

Chapter 4 Synthesis of branched copolymers 63

Chapter 5 Formation of uniform TiO2 nanoparticles by means of block
copolymer micelles as nanoreactors 83

Chapter 6 Nano-structured micropatterns by combination of block
copolymer self-assembly and UV photolithography 97

Chapter 7 Low ion dose FIB modification of monomicellar layers for the
creation of highly ordered metal nanodots arrays 125

Chapter 8 Nanofibres electrospun from block copolymer micellar solutions 140

Summary 171

Acknowledgement 175

Curriculum vitae 177 ii
List of abbreviations, acronyms and symbols:

α angle of dipping
β parameter related to particle-particle and particle-substrate
interactions
δ chemical shift
ε porosity
μ solution viscosity
ρ solution density
σ surface tension
φ particle volume fraction
χ Flory Huggins interaction parameter AB
µCP microcontact printing
µL microlitre
µm micrometre
Å Angstrom
°C Celsius degree
2VP 2-vinylpyridine
AFM Atomic Force Microscopy
ATRP Atom-Transfer Radical Polymerisation
Au gold
- AuCl chloroauric anion 4
BCl trichloroborane 3
(Bu)Mg dibutyl magnesium 2
c concentration
CaH calcium hydrate 2
[CH (CH ) ]Al trioctylaluminum 3 2 7 3
CHCl chloroform 3
CHI methyl iodide 3
chlorosilane 2,2-Dimethyl-5-(chlorodimethylsilylpropyloxymethyl)-5-ethyl-
1,3-dioxane
CMC critical micelle concentration iii
CoCl cobalt (II) chloride 2
CTC center-to-center distance
d doublet
DP degree of polymerisation
DPE 1,1-diphenylethylene
DPMK diphenylmethyl potassium
DPN dip pen nanolithography
EO ethylene oxide
eV electron volt
g gravitational constant
h hour or thickness of the micellar array
H hydrogen 2
HAuCl *3H O tetrachloro auric acid 4 2
HCl hydrogen chloride
HVL high vacuum line
HRTEM High-Resolution Transmission Electron Microscopy
FIB Focus Ion Beam
FT-IR Fourier Transform Infrared Spectroscopy
ITO thin oxide
j solvent evaporation flux e
j micelle flux p
j solvent flux w
J spin-spin coupling constant HH
+K potassium ion
KBr potassiumbromide
kHz kilohertz
KI potassium iodide
KOH potassium hydroxide
l evaporation length
L loading
LCM large compound micelles
LiAuCl lithium tetrachloroaurate (III) 4iv
LiAlH lithium aluminium hydrate 4
LiCl lithium chloride
m multiplet
mbar millibar
MBE Molecular Beam Epitaxy
MCVD Metalorganic Chemical Vapour Deposition
MeSiHCl dimethyl chlorosilane 2
MeOH methanol
mg milligram
MHz megahertz
min minute
mL millilitre
Mn number average molecular weight
Mw weight average mo
n number of moles
N overall degree of polymerisation
N nitrogen 2
Na sodium
NaCl sodiumchloride
Na SO sodium sulphate 2 4
N degree of polymerisation of block ii
nm nanometre
NMR Nuclear Magnetic Resonance
O oxygen 2
p.a. pure for analysis
PB poly(butadiene)
PB-b-PEO poly(butadiene)-block-poly(ethylene oxide)
(PEO) [poly(ethylene oxide)]2 2
PI poly(isoprene)
PI-b-P2VP poly(isoprene)-block-poly(2-vinpyridine)
PI-b-PEO poly(isoprene)-block-poly(ethylene oxide) v
PMMA-b-PHEMA poly(methyl methacrylate)-block-poly(2-hydroxyethyl
methacrylate)
ppm parts per million
PS -b-PEO (polystyrene) -block-poly(ethylene oxide) 2 2
PS -b-PLLA (polystyrene) -block-poly(L-lactide) 2 2
PS -b-PMAA (polystyrene) -block-poly(methyl methacrylate) 2 2
PS -b-tBuMA (polystyrene) -block-poly(tert-butyl methacrylate) 2 2
PS polystyrene
PS-b-(PtBA) polystyrene-block-[poly(tert-butyl acrylate)]2 2
PS-b-(PAA)block-[poly(acrylic acid)]2 2
PS-b-P2VP polystyrene-block-poly(2-vinpyridine)
PS-b-P4VP polystyrene-block-poly(4-vinpyridine)
PS-b-(PEO) polystyrene-block-[poly(ethylene oxide)]2 2
Pt platinum
PTFE polytetrafluoroethylene
QDs quantum dots
R universal gas constant
Ref reference
s singlet
s-BuLi sec-butyllithium
SCCP solvent capillary contact printing
SEC Size Exclusion Chromatography
SEM Scanning Electron Microscopy
Si silicon
SiO silicon dioxide 2
SiOSi 1,3-bis-[(2,2-dihydroxymethyl)-butyloxypropyl]-tetramethyl-
disiloxane
STM Scanning Tunnelling Microscopy
t triplet
T temperature vi
t-Bu-P 1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis-4
5 5[tris(dimethylamino)-phosphoranylidenamino]-2 λ ,4λ -
catenadi(phosphazene)] or phosphazene base
TEM Transmission Electron Microscopy
T glass temperature g
THF tetrahydrofuran
TiCl tetrachlorotitanium 4
TiO titanium oxide
TiO titanium dioxide 2
Ti(OC H ) titanium (IV) isopropoxide 3 7 4
TLC Thin Layer Chromatography
TMEDA N,N,N ′,N ′-Tetramethylethylenediamine
UV ultraviolet
v array growth rate c
v substrate withdrawal rate w
vol volume
wt% weight percent
XPS X-ray Photoelectron Spectroscopy Chapter 1
Introduction
1.1 Block copolymers in nanoscience and nanotechnology
Over the past two decades, nanometer-sized materials and devices have attracted large
interest of many scientists and engineers; moreover, the words “nanoscience” and
“nanotechnology” have captured the attention of the general public. This is because of
the broad range of current and prospective applications of nanomaterials in electronics,
high-density data storage, chemical sensing, drug delivery, medical diagnostic systems,
nanocatalysis, etc. The main driving force that pushes research toward the investigation
of materials at the nanometer and atomic scale is linked to the need, in modern
technology, of miniaturizing systems and devices and of dramatically increasing their
[1-7]efficiency.
There are two essentially different approaches towards nanostructures: “top-down” and
“bottom-up”. The former one creates small-scale structures starting from a large
homogeneous material that is selectively modified by the removal or cutting down to a
desired size. The latter one is based on self-organization of small components (building
blocks) such as atoms or molecules into nanoscale objects. Although, the industry is still
rooted in the “top-down” nanoprocessing, recent significant progress in the
understanding of self-assembly processes allows supposing that the “bottom-up”
[8, 9] [10-12]techniques or combinations of these two methodologies will be soon the
preferred alternatives in the fabrication of nanomaterials. In the opposition to the
conventional techniques that are often very expensive, time consuming, and serial
processes, “bottom-up” is a cheap, simple, and parallel approach allowing construction
of nanoobjects on large areas.
Self-assembly of amphiphilic block copolymers is a model example of “bottom-up”
system. Block copolymers, where two or more different chains of repeating segments
are linked together, segregate into distinct structures due to the incompability of the
[13]blocks. Fig 1. 1 shows five types of stable bulk morphologies for a diblock
[14]copolymer. The nature and the shape of the microphase-separated domains depend
on the total degree of polymerization (N = N + N ), the composition (f = N /N) and A B A2 Chapter 1
the Flory-Huggins interaction parameter χ (which is a measure of the incompatibility AB
between the two blocks). Typically dimensions of the segregated domains can be tuned
[15]from 5 to more then 100 nm by changing the molecular weight of the polymer.


Fig 1. 1 Schematic representations of the ordered microstructures obtained for diblock
copolymer melts; from left to right: body-centered cubic packed spheres, hexagonal-
[14]packed cylinders, gyroid, hexagonally perforated layers and lamellae.
The spectrum of block copolymer morphologies is by far extended via addition of a
selective solvent, in which amphiphilic block copolymers form various micellar
[16]structures with one block dissolved and the other associated. Although usually

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents