Bifurcation of positive periodic solutions of first-order impulsive differential equations
16 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Bifurcation of positive periodic solutions of first-order impulsive differential equations

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
16 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

We give a global description of the branches of positive solutions of first-order impulsive boundary value problem: { u ′ ( t ) + a ( t ) u ( t ) = λ f ( t , u ( t ) ) , t ∈ ( 0 , 1 ) , t ≠ t k , k = 1 , … , p , u ( t k + ) = u ( t k − ) + λ I k ( u ( t k ) ) , k = 1 , … , p , u ( 0 ) = u ( 1 ) , which is not necessarily linearizable. Where λ > 0 is a parameter, 0 < t 1 < t 2 < ⋯ < t p < 1 are given impulsive points. Our approach is based on the Krein-Rutman theorem, topological degree, and global bifurcation techniques. MSC: 34B10, 34B15, 34K15, 34K10, 34C25, 92D25.

Sujets

Informations

Publié par
Publié le 01 janvier 2012
Nombre de lectures 7
Langue English

Extrait

Ma et al.Boundary Value Problems2012,2012:83 http://www.boundaryvalueproblems.com/content/2012/1/83
R E S E A R C HOpen Access Bifurcation of positive periodic solutions of first-order impulsive differential equations * Ruyun Ma , Bianxia Yang and Zhenyan Wang
* Correspondence: mary@nwnu.edu.cn Department of Mathematics, Northwest Normal University, Lanzhou, 730070, P.R. China
Abstract We give a global description of the branches of positive solutions of first-order impulsive boundary value problem: u(t) +a(t)u(t) =λf(t,u(t)),t(0, 1),t=tk,k= 1,. . .,p, + – u(t)=u(t)+λIk(u(tk)),k= 1,. . .,p,u(0) =u(1), k k
which is not necessarily linearizable. Whereλ> 0 is a parameter, 0 <t1<t2<∙ ∙ ∙<tp< 1 are given impulsive points. Our approach is based on the Krein-Rutman theorem, topological degree, and global bifurcation techniques. MSC:34B10; 34B15; 34K15; 34K10; 34C25; 92D25 Keywords:Krein-Rutman theorem; topological degree; bifurcation from interval; impulsive boundary value problem; existence and multiplicity
1 Introduction Some evolution processes are distinguished by the circumstance that at certain instants their evolution is subjected to a rapid change, that is, a jump in their states. Mathemati-cally, this leads to an impulsive dynamical system. Differential equations involving impul-sive effects occur in many applications: physics, population dynamics, ecology, biological systems, biotechnology, industrial robotic, pharmacokinetics, optimal control,etc. There-fore, the study of this class of impulsive differential equations has gained prominence and it is a rapidly growing field. See [–] and the references therein. Let us consider the equation     u(t) +a(t)u(t) =λf t,u(t) ,tJ, (.)
subjected to the impulsive boundary condition     + – u t=u t+λIku(tk) ,k= , . . . ,p,u() =u(), k k
(.)
whereλ>  is a real parameter,J= [,]\{t, . . . ,tp},  <t<t<∙ ∙ ∙<tp<  are given impulsive points. We make the following assumptions: (H)aC([, ],R)is a-periodic function anda(t)dt> ;
©2012 Ma et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents