C-Band LINAC for a race track microtron
252 pages
English

C-Band LINAC for a race track microtron

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
252 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS FÍSICAS Departamento de Física Atómica, Molecular y Nuclear C-BAND LINAC FOR A RACE TRACK MICROTRON. MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR David Carrillo Barrera Bajo la dirección del doctor Vasily Ivanovicht Shvedunov Madrid, 2010 ISBN: 978-84-693-8239-4 © David Carrillo Barrera, 2010 CIEMAT Unidad de Aceleradores UNIVERSIDAD COMPLUTENSE DE MADRID Departamento de Física Atómica, Molecular y Nuclear TESIS DOCTORAL LINAC EN BANDA C PARA UN MICROTRON DE PISTA C-BAND LINAC FOR A RACE TRACK MICROTRON MICROTRON Memoria realizada por David Carrillo Barrera para optar al grado de Doctor Director de Tesis: Dr. Vasiliy Ivanovich Shvedunov Madrid - 2010 CONTENTS CONTENTS 1 Introduction .....

Sujets

Informations

Publié par
Publié le 01 janvier 2010
Nombre de lectures 35
Langue English
Poids de l'ouvrage 12 Mo

Extrait


UNIVERSIDAD COMPLUTENSE DE MADRID

FACULTAD DE CIENCIAS FÍSICAS
Departamento de Física Atómica, Molecular y Nuclear





C-BAND LINAC FOR A RACE TRACK
MICROTRON.


MEMORIA PARA OPTAR AL GRADO DE DOCTOR
PRESENTADA POR

David Carrillo Barrera


Bajo la dirección del doctor

Vasily Ivanovicht Shvedunov


Madrid, 2010



ISBN: 978-84-693-8239-4 © David Carrillo Barrera, 2010



CIEMAT
Unidad de Aceleradores

UNIVERSIDAD COMPLUTENSE DE MADRID
Departamento de Física Atómica, Molecular y Nuclear



TESIS DOCTORAL
LINAC EN BANDA C PARA UN MICROTRON
DE PISTA
C-BAND LINAC FOR A RACE TRACK
MICROTRON MICROTRON

Memoria realizada por
David Carrillo Barrera
para optar al grado de Doctor

Director de Tesis: Dr. Vasiliy Ivanovich Shvedunov

Madrid - 2010 CONTENTS CONTENTS

1 Introduction .............................................................................................................................. - 1 -
1.1 State of the art ........................ - 2 -
1.2 Objectives and thesis structure ............................................................................................... - 5 -
1.3 Introduction to Particle Accelerators ...................... - 7 -
1.3.1 The purpose of particle accelerators ........................................................................... - 7 -
1.3.2 History of accelerators ............................................................... - 10 -
1.3.3 Typical components in a particle accelerator ............................................................ - 20 -
1.3.3.1 Particle sources ........................................................................ - 20 -
1.3.3.2 RF cavities ................................................ - 20 -
1.3.3.3 Beam guiding and focusing devices ......... - 21 -
1.3.3.4 Injection and extraction devices .............................................. - 22 -
1.3.3.5 Diagnostics ............................................................................... - 23 -
1.4 Circular and race-track microtrons ....................................................... - 24 -
1.4.1 Circular Microtron ...................................................................................................... - 24 -
1.4.2 Race-Track Microtron (RTM)...................................................... - 26 -
1.4.2.1 Brief history of RTM ................................. - 26 -
1.4.2.2 Principles of operation ............................................................................................. - 26 -
1.4.2.3 Summary of RTM characteristics ............................................................................. - 29 -
1.4.3 RTM applications ...................................................................... - 30 -
1.4.3.1 Low energy nuclear physics ..................................................................................... - 31 -
1.4.3.2 Injectors ................................................... - 31 -
1.4.3.3 Radiotherapy ........................................................................... - 32 -
1.4.3.4 Elemental analysis ................................... - 32 -
1.4.3.5 Medical Isotopes Production ................................................................................... - 33 -
1.4.3.6 Cargo inspection ...... - 34 -
1.5 RTM parameters dependence on operating wavelength ...................................................... - 36 -
1.6 12 MeV RTM specification .................................................................................................... - 39 -
2 Accelerating Structures: Theoretical Background .... - 43 -
2.1 Basic microwave concepts .................................................................................................... - 43 -
2.1.1 Introduction ............................................................................... - 43 -
2.1.2 Waveguides and transmission lines ........... - 45 -
i
2.1.3 RF Cavities in accelerators ......................................................................................... - 47 -
2.2 Travelling and standing wave accelerating structures for electron linacs ............................ - 50 -
2.2.1 Travelling wave structures ......................................................................................... - 50 -
2.2.2 Standing wave structures .......................... - 52 -
2.3 Types of normal and superconducting standing wave accelerating structures .................... - 53 -
2.3.1 Normal Conducting Cavities ....................................................................................... - 53 -
2.3.2 Superconducting cavities ........................... - 53 -
2.4 Main parameters of the standing wave accelerating structure ............................................ - 55 -
2.4.1 Quality factor and external coupling with RF cavities ............... - 55 -
2.4.2 Electric field, energy gain, transit time factor, shunt impedance and synchronous
particle - 58 -
2.4.3 Coupling between cavities ......................................................................................... - 60 -
2.4.4 Pulsed and continuous mode: Duty factor ................................ - 60 -
2.5 Dependence of the standing wave accelerating structure parameters on wavelength........ - 61 -
2.6 Standing wave accelerating structure description in lumped circuit theory ......................... - 65 -
2.7 Modes of accelerating structure. Dispersion characteristic .................................................. - 68 -
2.8 Numerical methods and codes for accelerating structure optimization ............................... - 72 -
2.8.1 RTM Trace .................................................................................................................. - 72 -
2.8.2 Superfish .................... - 72 -
2.8.3 Ansys .......................................................................................................................... - 73 -
2.8.4 Ansoft HFSS ................................................ - 73 -
2.8.5 CST Studio ................. - 74 -
2.9 Main steps of standing wave accelerating structure optimization ....................................... - 75 -
3 C-band RTM linac optimization ................................................................ - 77 -
3.1 Peculiarities of RTM linac ...................................... - 77 -
3.2 RTM linac parameters specification ...................................................................................... - 79 -
3.3 Electrodynamics characteristics optimization ....................................................................... - 81 -
3.3.1 2D linac optimization with RF and beam dynamics codes ......................................... - 82 -
2.5.2.1 Regular =1 cell optimization ................................................................................. - 82 -
3.3.1.1 End =1 cell calculations .......................... - 86 -
3.3.1.2 First <1 cell calculation and linac optimization ...................... - 87 -
3.3.1.3 Summary of 2D linac optimization ........................................................................... - 91 -
3.3.2 3D linac cells calculation, coupling factor and field distribution optimization .......... - 92 -
3.3.2.1 Initial considerations ................................................................................................ - 92 -
ii
3.3.2.2 Order of 3D calculations: Methodology ................................................................... - 94 -
3.3.2.3 Step (a). Calculation of regular cell (2a=2b=3a=3b=4a) without coupling slots. ..... - 95 -
3.3.2.4 Step (b). Calculation of short end cell (1a+1b) without coupling slots. ................... - 97 -
3.3.2.5 Step (c). Tuning 2b+3a assembly with coupling slots .............................................. - 98 -
3.3.2.6 Steps (d), (e). Tuning 2a+1b+1a assembly with coupling slots. ............................ - 102 -
3.3.2.7 Step (f). Tuning 4b+4a+3b assembly with coupling slots ....... - 105 -
3.3.2.8 Step (g). Calculation of the full assembly: 1a+1b+2a+2b+3a+3b +4a+4b .............. - 107 -
3.3.2.9 Step (h) Optimization of accelerating structure coupling with waveguide ........... - 111 -
3.3.2.10 Summary of 3D linac optimization ......................................................................... - 118 -
3.3.3 Calculations of the tolerances for basic cell dimensions ......... - 119 -
3.3.4 Analysis of multipole fields caused by the coupling slots and waveguide ............... - 125 -
3.3.4.1 Effect of couplin

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents