Computation of eigenvalues of discontinuous dirac system using Hermite interpolation technique
22 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Computation of eigenvalues of discontinuous dirac system using Hermite interpolation technique

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
22 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

We use the derivative sampling theorem (Hermite interpolations) to compute eigenvalues of a discontinuous regular Dirac systems with transmission conditions at the point of discontinuity numerically. We closely follow the analysis derived by Levitan and Sargsjan (1975) to establish the needed relations. We use recently derived estimates for the truncation and amplitude errors to compute error bounds. Numerical examples, illustrations and comparisons with the sinc methods are exhibited. Mathematical Subject Classification 2010: 34L16; 94A20; 65L15.

Informations

Publié par
Publié le 01 janvier 2012
Nombre de lectures 5
Langue English

Extrait

Tharwat and BhrawyAdvances in Difference Equations2012,2012:59 http://www.advancesindifferenceequations.com/content/2012/1/59
R E S E A R C HOpen Access Computation of eigenvalues of discontinuous dirac system using Hermite interpolation technique 1,2* 1,2 Mohammed M Tharwatand Ali H Bhrawy
* Correspondence: zahraa26@yahoo.com 1 Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia Full list of author information is available at the end of the article
Abstract We use the derivative sampling theorem (Hermite interpolations) to compute eigenvalues of a discontinuous regular Dirac systems with transmission conditions at the point of discontinuity numerically. We closely follow the analysis derived by Levitan and Sargsjan (1975) to establish the needed relations. We use recently derived estimates for the truncation and amplitude errors to compute error bounds. Numerical examples, illustrations and comparisons with the sinc methods are exhibited. Mathematical Subject Classification 2010:34L16; 94A20; 65L15. Keywords:Dirac systems, Hermite interpolations, transmission conditions, discontinu ous boundary value problems, truncation and amplitude errors, sinc methods
1 Introduction 2 2 Lets> 0 andPWbe the PaleyWiener space of allL()entire functions of exponen 2 2 tial type types. Assume thatf(t)PWPW. Thenf(t) can be reconstructed via the sampling series      nπnπsin(σtnπ) 2f(t) =f S(t) +f Sn(t)(1) n σ σσ =−∞ whereSn(t) is the sequences of sinc functions sin(σtnπ)nπ ,t= (σtnπ)σ Sn(t) :=(2) nπ 1,t= .
Series (1) converges absolutely and uniformly on(cf. [14]). Sometimes, series (1) is called the derivative sampling theorem. Our task is to use formula (1) to compute eigenvalues of Dirac systems numerically. This approach is a fully new technique that uses the recently obtained estimates for the truncation and amplitude errors associated with (1) (cf. [5]). Both types of errors normally appear in numerical techniques that use interpolation procedures. In the following we summarize these estimates. The truncation error associated with (1) is defined to be
© 2012 Tharwat and Bhrawy; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Tharwat and BhrawyAdvances in Difference Equations2012,2012:59 http://www.advancesindifferenceequations.com/content/2012/1/59
+ RNf t:=f tfNt,NZ,tR(3) wherefN(t) is the truncated series      nπnπsin(σtnπ) 2fN(t) =f S(t) +f Sn(t) n(4) σ σσ nN 2 It is proved in [5] that iff(t)PWandf(t) is sufficiently smooth in the sense that +k2 there existskÎsuch thatt f(t)ÎL(), then, fortÎ, |t| <Nπ/s, we have 2 ξk,σEk|sinσt|1 1 |RN(f)(t)| ≤TN,k,σ(t+) := k3/2 3/2 3(N(+ 1)Nπσt) (Nπ+σt) (5)   2 ξk,σ(σEk+k Ek1)|sinσt|1 1 + +k σN+ 1Nπσt Nπ+σt
where the constantsEkandξk,sare given by
k2 Ek:=|t f(t)|dt, −∞
k+1/2 σ ξk,σ:= k+1k π14
(6)
The amplitude error occurs when approximate samples are used instead of the exact ones, which we can not compute. It is defined to be    nπnπ ˜ 2 A(ε,f)(t) =ff S(t) n σ σ n=−∞ (7)    nπnπsin(σtnπ) ˜   +ff Sn(t) ,tR σ σσ   nπnπ ˜ ˜ nπnπwherefandfare approximate samples offandf, respectively. Let us assume that the differences      ˜ ˜ nπnπ nπnπ f,ε:= εn:=fnff,nZ,are bounded by a positive num 2 berε, i.e.|εn|,|ε| ≤εIff(t)PWsatisfies the natural decay conditions    nπnπ     |εn| ≤f,εnf(8)
f f(t),tR− {0}(9) +1 t 0 <l1, then for0< εminπ/σ,σ/π, 1/ewe have, [5], 1/4  4e ||A(ε,f)||3e(1 +σ) + ((π/σ)A+Mf)ρ(ε) + (σ+ 2 + log(2))Mfεlog(1/ε)(10) σ + 1 where   3σ σ A:=|f(0)|+Mf,ρ(ε) :=γ+ 10 log(1/ε)(11) π π n 1 andγ:= limlogn= 0.57721is the EulerMascheroni constant. n→∞k=1 k
Page 2 of 22
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents