Cytochrome c oxidase mediates the regulation of mitochondrial function in an in vitro model of Huntington s disease [Elektronische Ressource] / vorgelegt von Shilpee Singh
74 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Cytochrome c oxidase mediates the regulation of mitochondrial function in an in vitro model of Huntington's disease [Elektronische Ressource] / vorgelegt von Shilpee Singh

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
74 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Cytochrome c oxidase mediates the regulation of mitochondrial function in an in vitro model of Huntington’s disease Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Shilpee Singh, M.Sc. Biotechnology aus Patna, India Berichter: Universitätsprofessor Dr. Hermann Wagner Universitätsprofessor Dr. Cordian Beyer Tag der mündlichen Prüfung: 08.10.2009 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. i Contents Abbreviations iii 5 1 Introduction 1.1 Brain: The different cell types and their functions 5 1.2 Neurodegeneration and brain region specificity 6 1.3 Huntington’s disease 7 1.3.1 Huntington’s disease - The in vivo model 7 1.3.2 Application of 3-nitropropionic acid (NPA) – The in vitro model 7 1.3.3 Impairment of mitochondrial function in Huntington’s Disease (HD) 8 1.4 The role of mitochondria in neurodegenerative diseases 9 1.5 Cytochrome c oxidase (COX) 10 1.5.1 Enzyme reaction 10 1.5.

Sujets

Informations

Publié par
Publié le 01 janvier 2009
Nombre de lectures 5
Langue English
Poids de l'ouvrage 1 Mo

Extrait

  
 Cytochrome c oxidase mediates the regulation of mitochondrial function in anin vitromodel of Huntingtons disease
 Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen  University zur Erlangung des akademischen Grades eines Doktors der  Naturwissenschaften genehmigte Dissertation  vorgelegt von Shilpee Singh, M.Sc. Biotechnology  aus Patna, India  Berichter: Universitätsprofessor Dr. Hermann Wagner  Universitätsprofessor Dr. Cordian Beyer  Tag der mündlichen Prüfung: 08.10.2009  Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek onlinergüabevfr.
i
Contents Abbreviations 1 Introduction 1.1 Brain: The different cell types and their functions 1.2 Neurodegeneration and brain region specificity 1.3 Huntingtons disease 1.3.1 Huntington’s disease - The in vivo model 1.3.2 Application of 3-nitropropionic acid (NPA) – The in vitro model 1.3.3 Impairment of mitochondrial function in Huntington’s Disease (HD) 1.4 The role of mitochondria in neurodegenerative diseases 1.5 Cytochrome c oxidase (COX) 1.5.1 Enzyme reaction 1.5.2 Enzyme subunit IV and its isoforms 1.6 Aims of the thesis 2 Materials and methods 2.1 Cell culture 2.1.1 Preparation of primary astrocytic culture 2.1.2 Preparation of primary neuronal cultures 2.1.3 Transfection and small interference (siRNA)-mediated knock-down 2.2 Cell treatment and staining 2.2.1 Immunocytochemistry 2.2.2 Hoechst and propidium iodide staining 2.2.3 Trypan blue staining for astrocytic culture 2.2.4 Trypan blue staining for neurons 2.3 Molecular biology 2.3.1 RNA isolation 2.3.2 Reverse transcription 2.3.3 Quantitative real time-PCR analysis 2.4 Colorimetric, fluorometric and luminometric assays 2.4.1 Intracellular ATP determination 2.4.2 Hydrogen peroxide detection in mitochondria 2.4.3 Measurement of reactive oxygen species (ROS) 2.4.4 Glycogen assay 2.4.5 Protein determination 2.5 Mitochondria isolation and enzyme kinetics measurement 2.5.1 Preparation of mitochondria from primary astrocytes 2.5.2 Polarographic measurements 2.6 Statistical analysis 3. Cytochrome c oxidase isoform IV-2 is involved in 3-nitropropionic  acid-induced toxicity in striatal astrocytes 3.1 Abstract 3.2 Introduction 3.3 Methods and material 3.4 Results 3.5 Discussion
iii 5 5 6 7 7 7 8 9 10 10 11 13 14 14 14 14 16 16 16 18 19 19 19 19 20 20 21 21 22 22 23 23 23 23 24 24 25 25 25 26 29 38
ii
4. Brain region specificity of 3-nitropropionic acid-induced  vulnerability of neurons involves cytochrome c oxidase 4.1 Abstract 4.2 Introduction 4.3 Methods and material 4.4 Results 4.5 Discussion General discussion Summary and conclusions Outlook and future perspective References Zusammenfassung und Schlußfolgerung   Acknowledgement  Curriculum vitae                        
42 42 42 44 46 51 54 57 58 59 70
72 73
 AbbreviationsADADPATPBBBBCABSAcDNACNSCOX Ct DEPC DMEM DMSODNAdNTPDTTEEDTAETCFCSGABAGAPDHGFAPH2DCF-DAHDHEPESHPRTKmMEMNBMNeuNNPAPBS
iii
Alzheimers diseaseAdenosine-di-phosphateAdenosine-tri-phosphateBlood brain barrierBovine calf serumBovine serum albuminComplementary DNACentral nervous systemCytochrome c oxidase threshold cycle Diethyl pyrocarbonate Dulbeccos modified Eagles medium Dimethyl sulfoxideDeoxyribonucleic acid2-deoxyribonucleoside-5-tri-phosphateDithiotreitolEmbryonal dayEthylenediamine tetraacetic acidElectron transport chainFetal calf serumγ-aminobutyric acidGlyceraldehyde 3-phosphate dehydrogenaseGlial fibrillary acidic protein2'7'-dichlorodihydrofluorescein diacetate acetyl esterHuntingtons diseaseN-2-Hydroxyethylpiperazine-N'-2-Ethanesulfonic AcidHypoxanthine guanine phosphoribosyl transferaseMichaelis-Menten constantMinimum essential mediumNeuronal basal mediumNeuronal NNitropropionic acidPhosphate buffered saline
PCR PD PI PLO PMSF ROS rpm RT-PCR SDS siRNA SSC TN Tris-HCl Vmax
iv
Polymerase chain reaction Parkinsons disease Propidium iodide Poly-L-ornithine Phenylmethylsulfonylfluoride Reactive oxygen species rotations per minute Real-time polymerase chain reaction Sodium dodecyl sulphate small-interfering ribonucleic acid saline-sodium citrate Turnover number Tris-(hydroxymethyl) aminomethane-hydrogen chloride Maximal activity
5
1. Introduction 1.1 Brain: The different cell types and their functions The brain is composed of mainly two classes of cells, neurons and glia. Glial cells outnumber neurons by 10:1 (sfn.org; Society for Neuroscience, 2000). So far, studies on brain function have been mainly focused on the effects of toxic and degenerative processes on the survival of neurons because of their crucial involvement in the chemical and electrical transmission of information between cells and over long distances. However, with course of time, glial cells too have emerged as new focus. Glial cells are non-neuronal cells that fulfill a large number of various functions including the formation of the blood-brain-barrier, providing nutrients and growth factors to the nervous tissue, and playing a principal role in repair processes in the brain and spinal cord following traumatic injuries (Davieset al.2006). Astrocytes belong to the class of glial cells and are characterized by a star-shaped morphology. They form close contacts to neighboring cells, like other astrocytes, blood vessel, neurons, and synaptic clefts by enwrapping these structures with their processes. There is a growing body of evidence that astrocytes provide many different and essential functions to support neuronal survival (Jourdainet al. Pellerin 2007;et al. Astrocytes also play an important role in 2007). neurodegenerative diseases. It is well-acknowledged that interactions between neurons and astrocytes occur and are critical for cell-cell signaling, energy metabolism, extracellular ion homeostasis, volume regulation, and neuroprotection in the central nervous system (Bezziet al. 2001; Haydonet al. 2001) For instance, astrocytes were shown to protect neurons against glutamate toxicity (Rosenberg and Aizenman, 1989) and peroxide generation (Deshagaret al. 1996). Astrocytes do express proteins that are necessary for the uptake of glutamate at synapses, ammonia detoxification, buffering of extracellular K+, and volume regulation (Hertzet al. 2004; Newmanet al. 2003). Astrocytes are also responsible for detection, propagation, and modulation of excitatory synaptic signals (Maragakis and Rothstein, 2006). With respect to the high energy demand of neuronal signaling processes, astrocytes provide an essential metabolic support to the neurons, thereby sustaining brain activity.
6
Fig. 1 Functional diversity of astrocytes Astrocyte functions include the modulation of synaptic (1) function via glutamate transporters, which remove glutamate from the synaptic cleft into the cell. (2) Communication between astrocytes occurs via release and binding of ATP to purine receptors on adjacent astrocytes. ATP binding results in phospholipase C activation with subsequent downstream activation of inositol triphosphate resulting in calcium mobilization. (3) Gap junctions contribute to an astrocyte syncytium for the exchange of small molecules and cellcell-communication. Metabolic functions include (4) the replenishment of neuronal glutamate via the glutamateglutamine-cycle, and (5) the transport of glucose from the vasculature to neural cells. (6) The regulation of blood flow is modulated by astrocyte end-feet enwrapping blood vessels including vasodilation being mediated by the release of vasoactive substances. (7) Glutamate release might occur following elevations in intracellular calcium and the activation of other factors related to prostaglandins. (8) Glutamate release through hemichannels can be inducedin vitrothrough lowering the extracellular calcium concentration. (9) Glutamate binding to metabotropic glutamate receptors activates intracellular calcium leading to the release of vasodilatory substances. Abbreviations: Gln, glutamine; Glu, glutamate; IP3, inositol triphosphate; PLC, phospholipase C (modified from Maragakis and Rothstein, 2006). 1.2 Neurodegeneration and brain region specificity  Neurodegeneration implies an impairment of neuronal function culminating often in a progressive loss of neurons. Many neurodegenerative diseases including Huntingtons, Parkinsons, and Alzheimers disease occur as a result of progressive loss of neurons affecting different brain regions to a different extent. Huntingtons disease causes astrogliosis and a loss of medium spiny neurons in the striatum (Vonsattelet al.1985;Brouilletet al.1999,Viset al.1999). Neural cells in the striatum are mainly affected, but cells of the frontal and temporal cortices are also involved (Selemonet al.2003). Alzheimer's disease is characterized by a loss of neurons in
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents