Determination of two dimensional trace gas distributions using tomographic LP-DOAS measurements in the city of Heidelberg, Germany [Elektronische Ressource] / put forward by: Denis Pöhler
334 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Determination of two dimensional trace gas distributions using tomographic LP-DOAS measurements in the city of Heidelberg, Germany [Elektronische Ressource] / put forward by: Denis Pöhler

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
334 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Dissertation Submitted to the Combined Faculties for Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences Put forward by: MPhys Denis Pöhler Born in: Erfurt, Germany Oral Examination: July 20, 2010 Determination of two dimensional trace gas distributions using tomographic LP- DOAS measurements in the city of Heidelberg, Germany Referees: Prof. Dr. Ulrich Platt Prof. Dr. Thomas Wagner Determination of two dimensional trace gas distributions using tomographic LP- DOAS measurements in the city of Heidelberg, Germany Abstract: Tomographic Long path Differential Optical Absorption Spectroscopy (LP-DOAS) allows two and three dimensional determination of trace gas distributions by measuring the average concentration along 10 to 20 intersecting light paths and applying tomographic inversion techniques. In this thesis such a setup was developed and applied for the first time to determine the horizontal distribution of several trace gases in the open atmosphere. The measurements took place in the city of Heidelberg, Germany from 2005 to 2007 and focused on the trace gases NO , SO , O , HCHO and HONO, which play a major role in the polluted 2 2 3atmosphere.

Sujets

Informations

Publié par
Publié le 01 janvier 2010
Nombre de lectures 13
Langue English
Poids de l'ouvrage 59 Mo

Extrait


Dissertation
Submitted to the
Combined Faculties for Natural Sciences and for Mathematics
of the Ruperto-Carola University of Heidelberg, Germany
for the degree of
Doctor of Natural Sciences

































Put forward by:
MPhys Denis Pöhler
Born in: Erfurt, Germany

Oral Examination: July 20, 2010

Determination of two dimensional trace gas distributions using
tomographic LP- DOAS measurements in the city of
Heidelberg, Germany

















Referees: Prof. Dr. Ulrich Platt
Prof. Dr. Thomas Wagner


Determination of two dimensional trace gas distributions using tomographic LP- DOAS
measurements in the city of Heidelberg, Germany

Abstract:
Tomographic Long path Differential Optical Absorption Spectroscopy (LP-DOAS) allows
two and three dimensional determination of trace gas distributions by measuring the average
concentration along 10 to 20 intersecting light paths and applying tomographic inversion
techniques. In this thesis such a setup was developed and applied for the first time to
determine the horizontal distribution of several trace gases in the open atmosphere. The
measurements took place in the city of Heidelberg, Germany from 2005 to 2007 and focused
on the trace gases NO , SO , O , HCHO and HONO, which play a major role in the polluted 2 2 3
atmosphere. The setup consisted of three Multi Beam LP-DOAS instruments and 20 retro
reflector arrays all installed on different buildings in the city. The 20 realised intersecting light
paths covered an area of 4 × 4 km² with different emission sources. The retrieved horizontal
trace gas distributions had a temporal resolution of up to 15 minutes with best results for NO , 2
SO and O . The highest trace gas concentrations (except for O ) and spatial variations arose 2 3 3
during low wind situations. Emission sources varying in space and time could be
distinguished and identified mainly as emissions from traffic (NO with O depletion) and 2 3
power plants / industry (SO ). Several insights into chemical processes in the atmosphere 2
could be gained by studying the interrelationship of the measured trace gases. HONO, for
example, displayed much lower spatial variability than NO and was thus not directly emitted 2
by the same source but rather formed in heterogeneous reactions. Transport processes of
plumes were also investigated.


Bestimmung von zwei-dimensionalen Spurengasverteilungen mittels tomographischen
LP-DOAS Messungen in der Stadt Heidelberg, Deutschland

Zusammenfassung
Tomographische Langpfad Differentielle Optische Absorptions Spektroskopie (LP-DOAS)
ermöglicht die zwei und dreidimensionale Bestimmung von Spurengasverteilungen durch das
Messen der mittleren Konzentration entlang von 10 bis 20 sich überschneidenden Lichtwegen
und der anschließenden Anwendung tomographischer Inversionsverfahren. In dieser Arbeit
wurde ein solcher Aufbau entwickelt und erstmalig angewandt um die horizontale
Spurengasverteilung in der offenen Atmosphäre zu bestimmen. Die Untersuchungen fanden in
der Stadt Heidelberg, Deutschland von 2005 bis 2007 statt und konzentrierten sich auf die
Spurengase NO, SO, O, HCHO und HONO, welche eine wichtige Rolle in der 2 2 3
verschmutzten Atmosphäre spielen. Der Aufbau bestand aus drei Multibeam LP-DOAS
Instrumenten und 20 Retroreflektorarrays installiert auf verschiedenen Gebäuden in der Stadt.
Die 20 realisierten Lichtwege überspannten ein Gebiet von 4 × 4 km² mit verschiedenen
Emissionsquellen. Die bestimmten horizontalen Spurenstoffverteilungen hatten eine
Zeitauflösung von bis zu 15 Minuten mit den besten Ergebnissen für NO , SO und O . 2 2 3
Höchste Konzentrationen (außer für O ) und stärkste räumliche Variabilität traten bei 3
schwachem Wind auf. Sich stark räumlich und zeitlich ändernde Emissionsquellen konnten
im Wesentlichen bestimmt werden als Verkehr (NO mit O Abbau) und Kraftwerke / 2 3
Industrie (SO ). Verschiedene Einblicke in die Abläufe in der Atmosphäre konnten gewonnen 2
werden durch die Untersuchung der Zusammenhänge der gemessenen Spurenstoffe. HONO,
z.B., zeigte eine viel geringere räumliche Variabilität auf als NO und wurde daher nicht 2
direkt durch dieselben Quellen emittiert, sondern in heterogenen Reaktionen gebildet.
Transportprozesse von Abgasfahnen wurden ebenfalls untersucht.

Table of Contents

1 Introduction ....................................................................................................................... 1
2 Chemistry and Physics of the Troposphere ...................................................................... 7
2.1 Nitrogen Oxides (NO ) ......................................................................................................... 8 x
2.1.1 Sources of Nitrogen Oxides ............................................................................................................. 9
2.1.2 Chemistry of Nitrogen Oxides in the Troposphere ........................................................................ 12
2.1.3 Tropospheric Sinks for Nitrogen Oxides ....................................................................................... 13
2.1.4 Annual Cycle of Nitrogen Dioxide ................................................................................................ 15
2.2 Ozone (O ) .......................................................................................................................... 15 3
2.2.1 Annual Cycle of Ozone ................................................................................................................. 19
2.3 Nitrous Acid (HONO) ........................................................................................................ 20
2.4 Formaldehyde (HCHO) ..................................................................................................... 22
2.5 Sulphur Dioxide (SO ) ....................................................................................................... 24 2
2.6 Trace Gas Distributions on Local Scale ........................................................................... 26
2.7 Atmospheric Dynamics of the Planetary Boundary Layer ............................................ 28
2.7.1 The Structure of the Planetary Boundary Layer ............................................................................ 29
2.7.2 Diurnal Variations of the Planetary Boundary Layer .................................................................... 31
2.7.3 Transport Processes in the Planetary Boundary Layer .................................................................. 33
3 Differential Optical Absorption Spectroscopy (DOAS) .................................................. 37
3.1 Absorption Spectroscopy .................................................................................................. 38
3.2 The Principle of DOAS ...................................................................................................... 41
3.3 Mathematical Description of a DOAS Spectrum ............................................................ 43
3.4 Conversion to Concentrations and Mixing Ratios .......................................................... 46
3.5 Evaluation Procedure ........................................................................................................ 47
3.6 Measurement Accuracy and Error Estimation ............................................................... 49
3.6.1 Systematic Errors ........................................................................................................................... 50
3.6.2 Photon Noise ( σ ) ........................................................................................................................... 50 p
3.6.3 Optical Noise ( σ ) .......................................................................................................................... 52 o
3.6.4 Instrument Noise ( σ ) ..................................................................................................................... 52 i
3.6.5 Estimate the Measurement Errors .................................................................................................. 53
3.6.6 Averaging Data Points ................................................................................................................... 55
3.7 Detection Limit ................................................................................................................... 56
3.8 Measurable Trace Gases ................................................................................................... 57
3.9 Spectral Sampling and Aliasing Problems ...................................................................... 58
3.10 Measurement Concepts ..................................................................................................... 59
4 DOAS Tomography ......................................................................................................... 61

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents