Evaluation of geological CO_1tn2 storage involving adsorption on mining wastes from coal processing [Elektronische Ressource] / vorgelegt von Thomas Kempka
153 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Evaluation of geological CO_1tn2 storage involving adsorption on mining wastes from coal processing [Elektronische Ressource] / vorgelegt von Thomas Kempka

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
153 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

\Evaluation of Geological CO Storage Involving Adsorption on2Mining Wastes from Coal Processing"Von der Fakultat fur Georessourcen und Materialtechnikder Rheinisch-Westfalisc hen Technischen Hochschule Aachenzur Erlangung des akademischen Grades einesDoktors der Ingenieurwissenschaftengenehmigte Dissertationvorgelegt von Dipl.-Ing.Thomas Kempkaaus Torun / PolenBerichter: Univ.-Prof. Dr.rer.nat. Ra g Azzam Dr.-Ing. Herbert KlapperichTag der mundlic hen Prufung: 19. Dezember 2008Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfugbarAbstractThe continuous increase of anthropogenic greenhouse gas emissions since the industrialization inthe 18th century is a serious problem regarding the climate change. In order to reduce CO emis-2sions, approaches for the improvement of power generation e ciency and the implementation ofCO capture at point sources followed by subsurface CO storage are being pursued. Predomi-2 2nantly geological formations are regarded as potential CO storage sites, but coal mines are also2being discussed regarding their applicability for CO storage. In mining regions world-wide,2ground subsidence originating from extensive mining is a serious problem resulting in damagewhich greatly increases the costs of raw material production. Within the scope of this thesisan approach for sorptive CO storage in coal mines was developed.

Informations

Publié par
Publié le 01 janvier 2008
Nombre de lectures 26
Langue English
Poids de l'ouvrage 18 Mo

Extrait

\Evaluation of Geological CO Storage Involving Adsorption on2
Mining Wastes from Coal Processing"
Von der Fakultat fur Georessourcen und Materialtechnik
der Rheinisch-Westfalisc hen Technischen Hochschule Aachen
zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften
genehmigte Dissertation
vorgelegt von Dipl.-Ing.
Thomas Kempka
aus Torun / Polen
Berichter: Univ.-Prof. Dr.rer.nat. Ra g Azzam Dr.-Ing. Herbert Klapperich
Tag der mundlic hen Prufung: 19. Dezember 2008
Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfugbarAbstract
The continuous increase of anthropogenic greenhouse gas emissions since the industrialization in
the 18th century is a serious problem regarding the climate change. In order to reduce CO emis-2
sions, approaches for the improvement of power generation e ciency and the implementation of
CO capture at point sources followed by subsurface CO storage are being pursued. Predomi-2 2
nantly geological formations are regarded as potential CO storage sites, but coal mines are also2
being discussed regarding their applicability for CO storage. In mining regions world-wide,2
ground subsidence originating from extensive mining is a serious problem resulting in damage
which greatly increases the costs of raw material production. Within the scope of this thesis
an approach for sorptive CO storage in coal mines was developed. By using mining wastes for2
CO immobilization and stowage of mining cavities, this technology combines CO storage with2 2
subsidence mitigation. A series of laboratory experiments on di erent mining wastes was con-
ducted to determine their subsidence mitigation and CO storage potentials. Furthermore, CO2 2
storage security in gob areas was investigated by application of adapted numerical multi-phase
and multi-component ow and transport models.
Kurzfassung
Der kontinuierliche Anstieg der anthropogenen Treibhausgasemissionen seit der Industrialisierung
im 18. Jahrhundert stellt ein wesentliches Problem im Hinblick auf den Klimawandel dar. Zur
Reduktion der CO -Emissionen werden Ansatze zur Wirkungsgradsteigerung von Energieerzeu-2
gungsprozessen sowie zur CO -Abscheidung an Punktquellen und der anschlie enden untert agi-2
gen Speicherung verfolgt. Geologische Formationen werden hierzu uberwiegend als potentielle
CO -Speicherstatten in Betracht gezogen, wobei auch Bergwerke in Hinsicht auf ihre Eignung zur2
CO -Speicherung diskutiert werden. Durch die Steinkohlengewinnung verursachte Bergschaden2
stellen ein weiteres Problem dar und fuhren zu einer Steigerung der Abbaukosten. Im Rahmen
dieser Dissertation wurde ein Ansatz zur sorptiven CO -Speicherung in Bergwerken entwickelt.2
Die Nutzung von Ruckstanden aus der Steinkohlenaufbereitung zur Immobilisierung von CO 2
und zum Versatz von Bruchhohlraumen kombiniert hierbei die untertagige CO -Speicherung 2
mit der Bergschadenvermeidung. Experimentelle Untersuchungen an den Ruc kstanden wurden
durchgefuhrt, um die Potentiale zur Bergschadenminderung und CO -Speicherung zu ermitteln.2
Des Weiteren wurde die CO -Speichersicherheit mit Hilfe von speziell adaptierten numerischen2
Multi-Phasen und Multi-Komponenten Fluss- und Transportmodellen untersucht.
IIIAcknowledgments
This thesis was prepared within the scope of the CO2TRAP joint-project (grant 03G0614A)
conducted within the German GEOTECHNOLOGIEN program funded by the German Ministry
of Education and Research (BMBF) and the German Research Foundation (DFG). I gratefully
appreciate this nancial support.
Special thanks go to Prof. Dr. Dr. h. c. Ra g Azzam, my rst supervisor and head of the
Department of Engineering Geology and Hydrogeology (RWTH Aachen University, Germany),
for the scienti c freedom and opportunities he gave me during my research activities as well as
his trust in my independent work. I would also like to thank Prof. Dr.-Ing. Herbert Klapperich,
head of the Department of Soil Mechanics (Technische Universitat Bergakademie Freiberg, Ger-
many), for co-supervising my thesis. And I also appreciate Prof. Dr. Helge Stanjek, head of the
Institute of Clay and Interface Mineralogy (RWTH Aachen University, Germany), chairing my
dissertation defense.
Furthermore, I would like to express my gratitude to Dr. Tom as Fern andez-Steeger for men-
toring my doctoral study and providing a lot of thought-provoking impulses. Many thanks go
to all the people involved in the CO2TRAP project for countless scienti c discussions and the
impressive cooperativeness, especially to Dr. Bernd Krooss (Institute of Geology and Geochem-
istry of Petroleum and Coal, RWTH Aachen University, Germany) and Dr. Andreas Busch (now
a liated to Shell International Exploration and Production B.V., The Hague, The Netherlands)
for their scienti c and technical support regarding the laboratory sorption experiments. Further
special thanks go to the working group of Prof. Dr.-Ing. Rainer Helmig (head of the Depart-
ment of Hydraulic Engineering, Stuttgart University, Germany), especially to Dr.-Ing. Holger
Class, Mr. Onur Dogan, Mr. Anozie Ebigbo and Mr. Andreas Kopp, for their indispensable
support considering my modeling activities and their hospitality during di erent workshops and
meetings in Stuttgart. Considering further scienti c discussions and sample provision I also
appreciate the support of the companies involved in the CO2TRAP project and would like to
direct my special thanks to Mr. Ralph Schluter (DMT GmbH & Co. KG, Essen, Germany) for
his indefatigable commitment within the project and one of its follow-ups CO2SINUS.
Many thanks go to the whole sta of the Department of Engineering Geology and Hydrogeology
for the warm and friendly atmosphere and nally for the nice doctoral hat they built for me.
Here, special thanks go to Mr. Bernd Meyer (technical manager of the geotechnical laboratory)
and to my two student assistants Mr. Jorg Schrader and Mr. Andre Vollmert for their support
IIIduring the countless experiments. Furthermore, I would like to thank my proofreaders (Dr.
Tom as Fern andez-Steeger, Mr. Michael Holzinger and especially Mrs. Katharina Burlage) for
increasing the quality and linguistic level of this work as well as Mr. Martin Schmidt for his
style guidance related to public relations.
Additionally, I would like to thank the cycling team Grenzland Uschis for their company in
weight-bearing and non-weight-bearing activities.
Finally, I want to express my greatest gratitude to my parents for their imperturbable trust and
continuous support.
IVList of Contents
List of Figures XIII
List of Tables XV
List of Abbreviations XVII
List of Symbols XIX
1 Introduction 1
1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Anthropogenic Greenhouse Gas Emissions . . . . . . . . . . . . . . . . . . 2
1.1.2 Ground Subsidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Structure and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Geological Storage of Carbon Dioxide 7
2.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Carbon Dioxide Storage in Coal Mines . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Sorptive Carbon Dioxide Storage by Linkage to Mining Wastes . . . . . . . . . . 13
2.3.1 Simultaneous Injection of CO and Mining Wastes . . . . . . . . . . . . . 132
2.3.2 Pre- and Post-Flooding CO and Mining Wastes Injection . . . . . . . . . 162
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 CO Storage Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
2.4.2 Uncertainties and Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 Laboratory Experiments 23
3.1 Sample Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.1 Geotechnical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Mineralogical P . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
VList of Contents
3.1.3 Petrological Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Uni-axial Compressibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Standard Oedometer Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 High-Pressure Oedometer Tests . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Carbon Dioxide Sorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 Impact of Regional Mining Wastes Composition . . . . . . . . . . . . . . 34
3.3.2 Impact of Moisture Content . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.3 Langmuir Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Water Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.1 Tri-axial Cell Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.2 Nitrogen Permeameter Tests . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6 Soil Moisture Retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.7 Experimental Results and Disc

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents