Failure mechanisms of thermal barrier coatings for high temperature gas turbine components under cyclic thermal loading [Elektronische Ressource] / vorgelegt von Vitalii Postolenko
122 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Failure mechanisms of thermal barrier coatings for high temperature gas turbine components under cyclic thermal loading [Elektronische Ressource] / vorgelegt von Vitalii Postolenko

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
122 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Failure Mechanisms of Thermal Barrier Coatings for High Temperature Gas Turbine Components under Cyclic Thermal Loading  Von der Fakultät für Georessourcen und Materialtechnik der Rheinisch -Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation vorgelegt von Dipl.-Ing. Vitalii Postolenko aus Kiew, Ukraine Berichter: Univ.-Prof. Jochen M. Schneider, Ph.D. Univ.-Prof. Dr.-Ing. Lorenz Singheiser Tag der mündlichen Prüfung: 21. November 2008 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar Abstract The mechanical behavior of PYSZ TBCs, deposited by EB-PVD and APS techniques, has been studied under thermal cyclic and isothermal loading. Two types of bond coats were chosen for the different multilayer systems: a single phase (Ni,Pt)-aluminide and a NiCoCrAlY overlay layer in the case of the EB-PVD and APS TBC respectively. The degradation of APS TBCs, i.e. crack evolution and oxidation kinetics during isothermal and thermal cyclic loading were systematically monitored and analyzed by means of scanning electron microscopy. Finally the life time results were summarized and compared with similar experiments previously described in literature. It was found out that isothermal and cyclic oxidation result similar damage mechanisms and oxide growth kinetics.

Informations

Publié par
Publié le 01 janvier 2008
Nombre de lectures 23
Langue English
Poids de l'ouvrage 10 Mo

Extrait

Failure Mechanisms of Thermal Barrier Coatings for High Temperature Gas
Turbine Components under Cyclic Thermal Loading 

Von der Fakultät für Georessourcen und Materialtechnik der
Rheinisch -Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften



genehmigte Dissertation


vorgelegt von

Dipl.-Ing. Vitalii Postolenko


aus Kiew, Ukraine



Berichter: Univ.-Prof. Jochen M. Schneider, Ph.D.
Univ.-Prof. Dr.-Ing. Lorenz Singheiser


Tag der mündlichen Prüfung: 21. November 2008

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar
Abstract

The mechanical behavior of PYSZ TBCs, deposited by EB-PVD and APS techniques, has
been studied under thermal cyclic and isothermal loading. Two types of bond coats were
chosen for the different multilayer systems: a single phase (Ni,Pt)-aluminide and a
NiCoCrAlY overlay layer in the case of the EB-PVD and APS TBC respectively.
The degradation of APS TBCs, i.e. crack evolution and oxidation kinetics during isothermal
and thermal cyclic loading were systematically monitored and analyzed by means of scanning
electron microscopy. Finally the life time results were summarized and compared with similar
experiments previously described in literature. It was found out that isothermal and cyclic
oxidation result similar damage mechanisms and oxide growth kinetics. In addition,
isothermal oxidation of APS TBCs resulted in significant Al-depletion of the two-phase ( + )
NiCoCrAlY bond coat, which finally led to a completely -depleted microstructure.
The influence of maximum temperature and specimen geometry, i.e. substrate curvature
radius on the life time of EB-PVD TBCs has been investigated. As expected, higher
maximum temperatures resulted in shorter life times of the multilayer system. Additionally,
cylindrical specimens with smaller outer diameter revealed the fastest failure. The
experimental results were described using an analytical approach, based on the principles of
linear elastic fracture mechanics.
In contrast to conventional microscopic damage analysis of APS TBCs, two non-destructive
methods were applied for investigation of EB-PVD TBCs:
- Grey scale analysis for the evaluation of thermal strains at the surface of EB-PVD
TBC during cooling phase of the cyclic oxidation.
- Infrared thermography for quantitative description of the delamination crack kinetics,
especially environmentally assisted subcritical crack growth phenomena at RT in dry
air and H O. 2
Curvature measurements at initially flat test pieces have been carried out for the evaluation of
residual stresses. The curvature change as a function of temperature was measured by means
of a high temperature telescope system and an optical fleximeter respectively. From these
results, the thermoelastic behavior of the EB-PVD TBC system as well as the residual stress
distribution were calculated, basing on the main principles of elastic bending theory.
Experimental results show a fairly good agreement with modeled curvature in the elastic
regime.

Kurzfassung

Das mechanische Verhalten von elektronenstrahlaufdampften (EB-PVD) und plasma-
gespritzten (APS) Y O teilstabilisierten ZrO (YSZ) Wärmedämmschichten (WDS) wurde 2 3 2
unter thermozyklischen und isothermischen Belastungen untersucht. Es wurden zwei Arten
der Haftvermittlerschicht (HVS) gewählt: Einphasige (Ni,Pt)-Aluminide im Fall von EB-PVD
und NiCoCrAlY für APS WDS.
Die Rissausbreitung und Oxidationskinetik von APS WDS bei isothermer und zyklischer
Belastung wurden mit REM systematisch beobachtet und analysiert. Die Lebensdauern
wurden mit ähnlichen Daten in der Literatur verglichen. Es zeigte sich, dass sich bei
isothermer und zyklischer Oxidation ähnliche Versagensmechanismen ergeben. Zusätzlich trat
in den zweiphasigen HVS ( + ) bei isothermer Oxidation massive Aluminiumverarmung auf,
was letzendlich zu einer vollständig -verarmten Mikrostruktur der HVS führte.
Der Einfluss der Maximaltemperatur und des Krümmungsradius der Proben auf die
Lebensdauer von EB-PVD WDS wurde untersucht. Wie erwartet, verursachen höhere
Maximaltemperaturen kürzere Lebensdauern. Außerdem wiesen die zylindrischen Proben mit
dem kleinsten Durchmesser das schnellste Versagen auf. Die experimentellen Ergebnisse
wurden mit einem analytischen Modell auf der Grundlage linear elastischer Bruchmechanik
beschrieben.
Im Gegenteil zu konventioneller Licht- und Rasterelektronenmikroskopie von APS WDS
kamen zwei zerstörungsfreie Prüfverfahren zur Untersuchung der EB-PVD WDS zum
Einsatz:
- Grauwertkorrelationsanalyse zur Ermittlung der thermischen Dehnungen an der WDS-
Oberfläche während der Kühlung.
- Infrarot Thermographie zur quantitativen Beschreibung der Delaminationsrisskinetik
bei Raumtemperatur im Laborluft und bei Einwirkung von H O. 2
Anhand von Krümmungsmessungen an Flachproben wurden Eigenspannungen anhand der
elastischen Biegetheorie berechnet. Die experimentelle Ergebnisse zeigen gute
Übereinstimmung mit der modellierten elastischen Krümmung.







1 INTRODUCTION AND PROBLEM DEFINITION.......................................................1
2 LITERATURE REVIEW................................................................................................3
2.1 Thermal Barrier Coating System...................................................................................3
2.1.1 Ni-based superalloys ..............................................................................................4
2.1.2 Metallic Bond Coat ................................................................................................8
2.1.3 Physical and mechanical properties of bond coat ..................................................12
2.1.4 Ceramic top coat ..................................................................................................14
2.1.4-I. EB-PVD TBC...................................................................................................16
2.1.4-II. Plasma sprayed TBC .......................................................................................18
2.1.4-III. Comparison of EB-PVD and APS TBCs ........................................................20
2.2 TBC failure by thermal cyclic loading.........................................................................21
2.2.1 Bond coat oxidation (TGO Growth) .....................................................................22
2.2.2 Interdiffusion between base material and bond coat..............................................23
2.2.3 Sintering of YSZ ..................................................................................................23
2.2.3-I APS TBC...........................................................................................................23
2.2.3-II EB-PVD TBC ..................................................................................................24
2.2.4 Residual stresses ..................................................................................................24
2.2.5 Crack formation and propagation in TBC.............................................................25
2.2.5-I APS TBC...........................................................................................................25
2.2.5-II EB-PVD TBC ..................................................................................................26
2.3 Principles of brittle fracture mechanics........................................................................26
2.4 Environmentally assisted subcritical crack growth ......................................................29
3 EXPERIMENTAL........................................................................................................31
3.1 Materials.....................................................................................................................31
3.2 Microstructure of TBC coated specimens in as-received state .....................................31
3.2.1 APS TBC .............................................................................................................31
3.2.2 EB-PVD TBC ......................................................................................................32
3.3 Geometry of specimens...............................................................................................32
3.3.1 Isothermal and cyclic oxidation tests ....................................................................32
3.3.1-I APS-TBC .........................................................................................................32
3.3.1-II EB-PVD TBC ..................................................................................................33
3.3.2 Curvature tests .....................................................................................................33
3.4 Experimental Procedures.............................................................................................35
3.4.1 Thermal cyclic oxidation of APS specimens................

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents