Formation of nitrous acid on urban surfaces [Elektronische Ressource] : a physical-chemical perspective / presented by Sebastian Trick
290 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Formation of nitrous acid on urban surfaces [Elektronische Ressource] : a physical-chemical perspective / presented by Sebastian Trick

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
290 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Dissertation submitted to the Combined Faculties for the Natural Science and for Mathematics of the Ruperto Carola University Heidelberg, Germany for the degree of Doctor of Natural Science presented by: Sebastian Trick born in Heilbronn oral examination: 21.07.2004 Formation of Nitrous Acid on Urban Surfaces - a physical-chemical perspective Referees: Prof. Dr. Ulrich Platt Prof. Dr. Ulrich Schurath Abstract Nitrous acid (HONO) has been observed in the nocturnal urban atmosphere for decades. During daylight hours, the rapid photolysis of HONO is a significant source of OH-radicals, which drive tropospheric chemistry and ozone-formation. Recently, unexpected high values of HONO have been detected during the day. Despite its importance, sources of HONO are still poorly understood. Direct emission of HONO or homogeneous chemical formation alone cannot explain the high HONO-to-NO 2ratios often measured in the boundary layer. Today it is thus generally accepted that HONO is formed by heterogeneous hydrolysis of NO . However, large uncertainties about the nature of the surfaces and 2the chemical conversion mechanism remain. Here, we present direct measurements from three field campaigns detecting daytime HONO mixing ratios of ~200 ppt using DOAS. A chemical transport model (RCAT 8.1.

Informations

Publié par
Publié le 01 janvier 2004
Nombre de lectures 22
Langue English
Poids de l'ouvrage 10 Mo

Extrait

Dissertation
submitted to the
Combined Faculties for the Natural Science and for Mathematics
of the Ruperto Carola University Heidelberg, Germany
for the degree of
Doctor of Natural Science



















presented by:

Sebastian Trick
born in Heilbronn


oral examination: 21.07.2004



Formation of Nitrous Acid on Urban Surfaces
-
a physical-chemical perspective























Referees: Prof. Dr. Ulrich Platt
Prof. Dr. Ulrich Schurath

Abstract

Nitrous acid (HONO) has been observed in the nocturnal urban atmosphere for decades. During
daylight hours, the rapid photolysis of HONO is a significant source of OH-radicals, which drive
tropospheric chemistry and ozone-formation. Recently, unexpected high values of HONO have been
detected during the day. Despite its importance, sources of HONO are still poorly understood. Direct
emission of HONO or homogeneous chemical formation alone cannot explain the high HONO-to-NO 2
ratios often measured in the boundary layer. Today it is thus generally accepted that HONO is formed
by heterogeneous hydrolysis of NO . However, large uncertainties about the nature of the surfaces and 2
the chemical conversion mechanism remain.
Here, we present direct measurements from three field campaigns detecting daytime HONO mixing
ratios of ~200 ppt using DOAS. A chemical transport model (RCAT 8.1.2) was modified to quantify
the individual contribution of the vertical transport effects and chemical processes for different times
of the day. While aerosols were found to be of minor importance under all circumstances, vertical
transport and heterogeneous HONO production on the ground surface (at ~5%) and on canopies (at
~45%) were found to be of major influence on the daytime production of atmospheric HONO.
The heterogeneous interactions of HONO with real urban surfaces were further investigated in a smog
chamber using a White-type DOAS multi-reflection system. The NO uptake coefficients on these 2
-8 -7 -5surfaces were calculated to be γ ~10 on Teflon, ~10 on PE foil, ~10 on asphalt and concrete, ~3 NO2
-6 -5x 10 on roof-tiles and flagstone-tiles, and ~2 x 10 on grass. The higher values were found to be well
correlated to an enhanced BET surface. The HONO concentrations were found to scale with the
relative humidity, and thus the HONO uptake coefficient is not independently determinable.
Therefore, a model (HeCSI) was developed using Langmuir adsorption-desorption isotherms to
describe the concentration-time series of all trace gases. Based on this new model approach, HONO
uptake coefficients, the amount of HONO adsorbed on the surfaces of the smog chamber, and the out-
gassing frequency could be determined. It was found that the physical-chemical equilibrium
underlying the model describes the chemical NO - system at all times X

Zusammenfassung

Salpetrige Säure (HONO) wird seit Jahrzehnten in der nächtlichen urbanen Atmosphäre beobachtet.
Am Tage stellt ihre rasche Photolyse eine bedeutende Quelle des OH-Radikals dar, das die
troposphärische Chemie und Ozonbildung katalysiert. In jüngster Zeit werden hohe HONO -
Messwerte auch am Tages gefunden. Neben dieser atmosphärischen Bedeutung der HONO, sind ihre
Quellen nur wenig verstanden. Direkte Emissionen und homogene Reaktionen können für sich nicht
die häufig in der PBL gemessenen HONO-zu-NO Verhältnisse erklären. Es gilt heute als gesichert, 2
dass HONO aus der heterogenen Hydrolyse von NO entsteht. Jedoch bestehen dabei enorme Un-2
sicherheiten betreff der Beschaffenheit der Oberfläche und des Mechanismus der chemischen
Umwandlung.
In dieser Arbeit wurden während dreier Feldmesskampagnen HONO - Tageswerte ~200 ppt mit
DOAS gemessen. Ein Chemie-Transport Model (RCAT 8.1.2) wurde modifiziert, um die einzelnen
Beiträge von Vertikaltransport und chemischen Prozessen tageszeitabhängig zu quantifizieren.
Während danach Aerosole nur einen vernachlässigbaren Einfluss auf die atmosphärischen HONO
Konzentrationen unter nahezu allen Bedingen auszuüben scheinen, beeinflussen die vertikale
Mischung, die heterogenen Reaktionen am Boden (dort zu ~5%) und besonders an Hauswänden (zu
~45%) enorm die Bilanz von HONO am Tage.
Die heterogenen Wechselwirkungen von HONO mit realen urbanen Oberflächen wurden in einer
Smogkammer mittels eines DOAS White-Vielfachreflexionssystem untersucht. Die NO uptake 2
-8 -7Koeffizienten für verschiedene Oberflächenarten wurden berechnet: γ ~10 auf Teflon, ~10 auf NO2
-5 -6 -5PE Folie, ~10 auf Asphalt und Beton, ~3 x 10 auf Dach- und Keramikfließen und ~2 x 10 auf
Gras. Diese erhöhten Werte konnten durch eine vergrößerte BET Oberfläche erklärt werden. Die
HONO - Konzentrationen wurden korreliert mit der relativen Luftfeuchte beobachtet, so dass HONO
uptake Koeffizienten nicht analytisch bestimmbar sind. Daher wurde ein Model (HeCSI) entwickelt,
das die Langmuir Absorptions-Desorptions-Isotherme nutzt, um die Konzentrationszeitreihen aller
Spurenstoffe gleichzeitig zu beschreiben. Mit diesem neuen Modellansatz konnten die HONO uptake
Koeffizienten, die Menge der an den Wänden der Smogkammer absorbierten HONO und dessen
Ausgasrate ermittelt werden. Weiter konnte gezeigt werden, dass mittels dieses physikalischen-
chemische Gleichgewichts, das dem Model zugrunde liegt, das chemische NO -Reaktionssystem zu x
jeder Zeit beschreibbar ist.

Table of Content i
Table of content
1 Introduction 1
2 Theoretical Background:
Chemistry and Physics of the Lower Troposphere 5
2.1 Tropospheric Nitrogen Oxides 6
2.1.1 Sources and Sinks of Tropospheric Nitrogen Oxides 6
2.1.2 Overview of Tropospheric NO Chemistry 11 y
2.2 Photochemical Reactions 13
2.2.1 The Photo-Stationary Steady State & Leighton Ratio 13
2.2.2 Deviations from the Leighton Ratio & the Formation of Photosmog 14
2.2.3 The Origin of the Tropospheric OH Radicals 15
2.3 Nitrous Acid (HONO) 18
2.3.1 Importance of Atmospheric HONO 18
2.3.2 Diurnal Variation of HONO in the Troposphere 19
2.3.3 Direct Emission Sources of Nitrous Acid 21
2.3.4 Homogeneous Formation of Nitrous Acid 23
2.3.5 Heterogeneous Formation of Nitrous Acid 25
2.3.5.1 The Disproportionation of NO 25 x
2.3.5.2 Direct Reduction on Fresh Soot 26
2.3.5.3 Further Heterogeneous Reactions yielding HONO 26
2.3.5.4 Photolytic Enhancement of HONO Formation 27
2.3.6 HONO Formation by Heterogeneous Dispropotionation of NO 28 2
2.3.6.1 Formation of Nitrous Acid on Airborne Particles (Aerosols) 28
2.3.6.2 s Acid on Macroscopic Surfaces & on the Ground 30
2.3.6.3 Evidence for a ground-near Source by Vertical Gradients of HONO 31
2.3.6.4 Kinetics & Water Dependence of HONO Formation 33
2.3.6.5 Mechanistic Sequences of Heterogeneous HONO Formation 35
2.3.7 Sinks of Atmospheric Nitrous Acid 38
2.4 Heterogeneous Reactions and Catalysis 40
2.4.1 Heterogeneous Catalysis 40
2.4.2 Adsorption and Desorption of Gases on a Solid Surface 42
2.4.2.1 Possibilities of Gas-Phase to Solid-Surface Interactions 42
2.4.2.2 Energetic Aspects of Adsorption and Desorption 44
2.4.3 Thermodynamic and Kinetic Considerations 46
2.4.3.1 Empirical Aspects on Thermodynamics 46
2.4.3.2 Mathematical Description of Adsorption 47
2.4.3.3 Description of Kinetic of Desorption 49
2.4.4 Derivation and Applications of Adsorption Isotherms 49
2.4.4.1 The Langmuir Adsorption-Desorption Isotherms 49
2.4.4.2 Kinetic of Heterogeneously (Catalyzed) Reactions 50
2.4.4.3 Other Adsorption Isotherms: BET Theory 51 Table of Content ii
2.5 Basics of Atmospheric Dynamics of the Boundary Layer 54
2.5.1 The Structure of the Planetary Boundary Layer 54
2.5.1.1 The Laminar Surface Layer 54
2.5.1.2 The Prandtl Layer 55
2.5.1.3 The Ekman Layer 55
2.5.1.4 The Height of the PBL 55
2.5.2 Diurnal Variations of the PBL: Micrometeorological Description 56
2.5.3 Transport Processes in the PBL: The Friction Velocity 58
2.5.3.1 Neutral Layering 59
2.5.3.2 Labile and Stable Layering 60
2.5.4 Radon as a Tracer for Mixing in and the Height of the PBL 62
3 Measurement Methods 65
3.1 Overview of Detection Techniques for Nitrous Acid 65
3.1.1 Chemical Surface Collection Techniques 65
3.1.1.1 The Denuder Technique 66
3.1.1.2 Chemiluminescence Detection 68
3.1.1.3 The DNPH-HPLC Method 69
3.1.1.4 The LOPAP Instrument 69
3.1.2 Mass Spectrometry 70
3.1.3 Spectroscopic Methods 71
3.1.3.1 UV – PF / LIF - Sensor 71
3.1.3.2 IR – Spectroscopy 71
3.2 Differential Optical Absorption Spectroscopy 72
3.2.1 An Overview of DOAS Applications 72
3.2.2 Theoretical Description of DOAS 73
3.2.2.1 Basic Theory of Absorption Spectroscopy & Lambert-Beers Law 73
3.2.2.2 DOAS for Atmospheric Measurements: Numerical Description 77
3.2.2.3 The Analysis Procedure 79
3.2.2.4 Error Estimation 81
3.

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents