Janus-head ligands in heterobimetallic complexes [Elektronische Ressource] / vorgelegt von Christian Kling
143 pages
Deutsch

Janus-head ligands in heterobimetallic complexes [Elektronische Ressource] / vorgelegt von Christian Kling

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
143 pages
Deutsch
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Janus‐head ligands  in heterobimetallic  complexes   Dissertation zur Erlangung des mathematisch‐naturwissenschaftlichen Doktorgrades "Doctor rerum naturalium" der Georg‐August‐Universität Göttingen    vorgelegt von Dipl.-Chem. Christian Kling aus Hannover Göttingen 2010  D7 Referent: Prof. Dr. Dietmar Stalke Korreferent: Prof. Dr. George M. Sheldrick Tag der Mündlichen Prüfung: 29.09.2010Die vorliegende Arbeit wurde in der Zeit von Januar 2007 bis August 2010 am Institut für Anorganische Chemie der Georg-August-Universität zu Göttingen unter der Leitung von Prof. Dr. Dietmar Stalke angefertigt. CONTENTS - I - Contents Chapter I Introduction 1 Introduction 11.1 Historical background 11.2 Status quo 31.3 Differentiation in catalysis 31.3.1 Heterogeneous catalysis 31.3.2 Homogeneous catalysis 31.3.3 Design and request on ligands 41.3.4 Bimetallic complexes 71.3.5 Designing a new ligand for heterobimetallic complexes 82 Scope 103 Literature 11 Chapter II Noval metal complex of di(2-pyridyl)amide 1 List of compounds 152 Introduction 173 Synthesis and structure 183.1 General procedure for group 14 metals 183.2 Bis(di(2-pyridyl)amido)germanium (2) and (3) 183.3 Bis(di(2-pyridyl)amido)tin (4) 223.4 (Di(2-pyridyl)amido)tin(hexamethyldisilazane) (5) 263.5 Bis(di(2-pyridyl)amido)lead (6) 283.

Informations

Publié par
Publié le 01 janvier 2010
Nombre de lectures 45
Langue Deutsch
Poids de l'ouvrage 3 Mo

Extrait

Janus‐head ligands  
in heterobimetallic  
complexes 
 
 
Dissertation zur Erlangung des 
mathematisch‐naturwissenschaftlichen Doktorgrades 
"Doctor rerum naturalium" 
der Georg‐August‐Universität Göttingen 
 
 
 
vorgelegt von
Dipl.-Chem. Christian Kling
aus Hannover





Göttingen 2010 






























D7
Referent: Prof. Dr. Dietmar Stalke
Korreferent: Prof. Dr. George M. Sheldrick
Tag der Mündlichen Prüfung: 29.09.2010Die vorliegende Arbeit wurde in der Zeit von Januar 2007 bis August 2010 am Institut
für Anorganische Chemie der Georg-August-Universität zu Göttingen unter der
Leitung von Prof. Dr. Dietmar Stalke angefertigt. CONTENTS - I -
Contents
Chapter I Introduction
1 Introduction 1
1.1 Historical background 1
1.2 Status quo 3
1.3 Differentiation in catalysis 3
1.3.1 Heterogeneous catalysis 3
1.3.2 Homogeneous catalysis 3
1.3.3 Design and request on ligands 4
1.3.4 Bimetallic complexes 7
1.3.5 Designing a new ligand for heterobimetallic complexes 8
2 Scope 10
3 Literature 11

Chapter II Noval metal complex of di(2-pyridyl)amide
1 List of compounds 15
2 Introduction 17
3 Synthesis and structure 18
3.1 General procedure for group 14 metals 18
3.2 Bis(di(2-pyridyl)amido)germanium (2) and (3) 18
3.3 Bis(di(2-pyridyl)amido)tin (4) 22
3.4 (Di(2-pyridyl)amido)tin(hexamethyldisilazane) (5) 26
3.5 Bis(di(2-pyridyl)amido)lead (6) 28
3.6 (Di(2-pyridyl)amido)(methyl)zinc (7) 30
4 Conclusion 32
5 Experimental 33
5.1 General 33
5.2 Spectroscopic and analytic methods 33
5.2.1 Nuclear Magnetic Resonance 33
5.2.2 Mass spectrometry 33
5.2.3 Elemental analysis 33
5.3 Bis(di(2-pyridyl)amido)germanium (2) and (3) 34
5.4 Bis(di(2-pyridyl)amido)tin (4) 35
5.5 (Di(2-pyridyl)amido)tin(hexamethyldisilazane) (5) 36CONTENTS - II -
5.6 Bis(di(2-pyridyl)amido)lead (6) 37
5.7 (Di(2-pyridyl)amido)(methyl)zinc (7) 38
6 Literature 39
Chapter III Preparation and modification of di(2-benzothiazolyl)phosphane
41
1 Introduction
41
2 Synthesis and structure
41
2.1 Di(2-benzothiazolyl)phosphane
47
2.2 Modification at the benzothiazole
50
2.3 Di(2-benzothiazolyl)phosphanide lithium
53
3 Conclusion
54
4 Experimental
54
4.1 General
54
4.2 Spectroscopic and analytic methods
54
4.2.1 Nuclear Magnetic Resonance
54
4.2.2 Mass spectrometry
54
4.3 (2-amino)(4-isopropyl)benzothiazole
55
4.4 (2-iodo)(4
56
4.5 Di(2-benzothiazolyl)phosphanide lithium
57
5 Literature


Chapter IV Group 14 metal complexes of di(2-benzothiazolyl)phosphane
1 List of compounds 59
2 Introduction 60
3 Synthesis and structure 61
3.1 Di(2-benzothiazolyl)phosphanide-bis(trimethylsilyl)amide-- 61
germanium(II)
3.2 Di(2-benzothiazolyl)phosphanide-bis(trimethylsilyl)amide 63
3.3 tin(II)
Di(2-benzothiazolyl)phosphanide-bis(trimethylsilyl)amide- 64
4 lead(II)oxid
5 Conclusion 68
5.1 Experimental 70
5.2 General 70CONTENTS - III -
5.2.1 Spectroscopic and analytic methods 70
5.2.2 Nuclear Magnetic Resonance 70
5.2.3 Mass spectrometry 70
5.3 Elemental analysis 70
Di(2-benzothiazolyl)phosphanide-bis(trimethylsilyl)amide-- 71
5.4 germanium(II)
5.5 Di(2-benzothiazolyl)phosphanide-bis(trimethylsilyl)amide 72
tin(II)
6 Di(2-benzothiazolyl)phosphanide-bis(trimethylsilyl)amide- 73
lead(II)oxid
7 Literature 74

Chapter V Iron complexes of di(2-benzothiazolyl)phosphane
1 List of compounds 76
2 Introduction 77
3 Synthesis and structure 28
3.1 N,N-bis[di(2-benzothiazolyl)phosphanide]iron (1) 78
3.2 [P-{di(2-benzothiazolyl)phosphanide}(cyclopentadienyl) 80
(carbonyl)iron] dimer (2)
4 Conclusion 83
5 Experimental 84
5.1 General 84
5.2 Spectroscopic and analytic methods 84
5.2.1 Nuclear Magnetic Resonance 84
5.2.2 IR-spectroscopy 84
5.2.3 Mass spectrometry 84
5.2.4 Elemental analysis 84
5.3 [P-{di(2-benzothiazolyl)phosphanide}(cyclopentadienyl) 85
(carbonyl)iron] dimer (2)
6 Literature 86

Chapter VI Hetreobimetallic complexes of di(2-benzothiazolyl)phosphane
1 List of compounds 87
2 Introduction 88
3 Synthesis and structure 89CONTENTS - IV -
3.1 (Di(2-benzothiazolyl)phosphanyl)(methyl)zinc (1) 89
3.2 Bis[di(2-benzothiazolyl)phosphanyl]zinc (2) 90
3.3 Activation of carbonyls 92
3.4 [{(MeCp)(OC) Mn}{P(bth) Zn(bth) P}{Mn(CpMe)(CO) }] (3) 942 2 2 2 2
3.5 Reactions of di(2-benzothiazolyl)phosphane with 98
tetracarbonyl nickel (4 and 5)
3.6 [{(OC) NiP(bth) ZnMe)(P(bth) ZnOEt)} ] (6) 1002 2 2 2
4 Conclusion 105
5 Experimental 107
5.1 General 107
5.2 Spectroscopic and analytic methods 107
5.2.1 Nuclear Magnetic Resonance 107
5.2.2 Mass spectrometry 107
5.2.3 IR-spectroscopy 107
5.2.4 Elemental analysis 108
5.3 Di(2-benzothiazolyl)phosphanyl)(methyl)zinc (1) 108
5.4 Bis[di(2-benzothiazolyl)phosphanyl]zinc (2) 108
5.5 [{(MeCp)(OC) Mn}{P(bth) Zn(bth) P}{Mn(CpMe)(CO) }] (3) 1092 2 2 2 2
5.6 [Di(2-benzothiazolyl)phosphanyl] (tricarbonyl)nickel (4) 110
5.7 Bis[di(2-benzothiazolyl)phosphanyl] (dicarbonyl)nickel (5) 111
5.8 [{(OC) NiP(bth) ZnMe)(P(bth) ZnOEt)} ] (6) 1122 2 2 2
6 Literature 113


Chapter VII Crystallographic section
1 Crystallographic section 115
1.1 Crystal Application 115
1.2 Data Collection and Processing 115
1.3 Structure Solution and Refinement 116
1.4 Treatment of Disorder 117
1.5 Bis(di(2-pyridyl)amido)germanium 118
1.6 Bis(di(2-pyridyl)amido)tin 119
1.7 (Di(2-pyridyl)amido)tin(hexamethyldisilazane) 120
1.8 Di(2-benzothiazolyl)phosphane with toluene 121
1.9 Di(2l)phosphanide lithium 122
1.10 Di(2-benzothiazolylid-bis(trimethylsilyl)amide-- 123CONTENTS - V -
germanium(II)
1.11 Di(2-benzothiazolyl)phosphanidbis(trimethylsilyl)- 124
amidelead(II)oxid
1.12 [P-{di(2-benzothiazolyl)phosphanide}(cyclopentadienyl) 125
(carbonyl)iron] dimer
1.13 Bis[di(2-benzothiazolyl)phosphanyl]zinc 126
1.14 [{(MeCp)(OC) Mn}{P(bth) Zn(bth) P}{Mn(CpMe)(CO) }] 1272 2 2 2 2
1.15 [{(OC) NiP(bth) ZnMe)(P(bth) ZnOEt)} ] 1282 2 2 2
2 Literature 129

Chapter VIII Conclusion and Outlook
1 Conclusion 130
1.1 Metal complexes based on di(2-pyridyl)amine 130
1.2 Di(2-benzothiazolyl)phosphane 131
1.3 ed on di(2-benzothiazolyl)-phosphane 131
2 Outlook 135
CHAPTER I – INTRODUCTION - 1 -
1 Introduction
Among the current main targets in inorganic chemical research are synthesis and
stabilization of unusual metal oxidation states, coordination in general, and the
mimicry of biological relevant metal centers. Metal organic compounds are usually
used as auxiliaries or reagents in organic chemistry, while modern inorganic
chemistry mainly focuses on the metal core of the employed complexes in order to
gain insights into catalytic properties, fine tuning thereof, and catalytic mechanisms.
Due to the identification of heterobimetallic active centers and observation of
cooperative effects, formation and structure determination of natural active centers
and heterobimetallic complexes gained increasing attention. Thus, ligand design
became an important field of research aiming on the development of efficient,
profitable, and sustainable catalysts for chemical transformations.
1.1 Historical backround
Catalysis derives from the greek verb καταλυειν (katàlyein) meaning “to untie”, “to
annul” or “to pick up”. The oldest evidence of human benefits in catalysis goes back
to the Sumerian from Mesopotamia at 6000 B.C. turning
sugar into alcohol by fermentation. One of the first
processes preparing an important bulk chemical is the lead
chamber process to prepare sulfuric acid. It is originally
known from the medieval times, but in 1748 John Roebuck
introduced this process to industry in Birmingham/England
[1]setting a basis for the industrial revolution. Sulfuric acid is
still one of the most important bulk chemicals. A nations
sulfuric acid production is still a good indicator for its
[2]industrial strength. Most of it is used to produce fertilizers
directly as ammonium sulfate or indirectly in the production
Figure 1: Döbereiner lamp.
of phosphoric acid. By now the way of producing sulfuric
acid was supplanted by the contact process, but the lead chamber process is still
used in fuel gas cleaning and the desulphurisation of CO for final storage. Another 2
commercially very successful early use of catalysis is the lighter/lamp by Johann
[3,4]Wolfgang Döbereiner using the reaction of hydrogen gas on a platinum sponge.

CHAPTER I – INTRODUCTION - 2 -
In 1835 Jöns Jakob Berzelius recognized the need of another reagent beside the
reac

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents