Magnon heat transport and magnon-hole scattering in one and two dimensions spin systems [Elektronische Ressource] / vorgelegt von Hanan Gouda Abd Elwahab Ahmed ElHaes
97 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Magnon heat transport and magnon-hole scattering in one and two dimensions spin systems [Elektronische Ressource] / vorgelegt von Hanan Gouda Abd Elwahab Ahmed ElHaes

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
97 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Magnon heat transportand magnon-hole scattering in oneand two dimensions spin systemsVon der Fakult¨at fur¨ Mathematik, Informatik undNaturwissenschaften der Rheinisch-Westf¨alischenTechnischen Hochschule Aachen zur Erlangung desakademischen Grades eines Doktors derNaturwissenschaften genehmigte DissertationVorgelegt vonM.Sc.Hanan Gouda Abd Elwahab AhmedElHaes¨aus Elkalyoubia - AgyptenBerichter: Universit¨atsprofessor Dr. Bernd Buc¨ hnerUniversit¨ Dr. Gernot Gun¨ therodtTag der mundlic¨ hen Prufung:¨ 24. September 2004Diese Dissertation ist auf den Internetseiten derHochschulbibliothek online verfugbar.¨Contents1 Introduction 112 Transport properties in solid state physics 32.1Transportcoefficients.................... 32.1.1 Thermal conductivity . . . . . . . . . . . . . . . . 42.2 Kinetic theory of the thermal conductivity . . . . . . . . 52.2.1 Simple kinetic model . . . . . . . . . . . . . . . . 62.3 Different contributions to the thermal conductivity . . . 72.3.1 Phonon thermal conduction . . . . . . . . . . . . 72.3.2 Callaway model . . . . . . . . . . . . . . . . . . . 132.3.3 Electronic heat transport . . . . . . . . . . . . . . 132.3.4 Magnon thermal conduction . . . . . . . . . . . . 143 Experimental techniques 193.1 Transport measurements . . . . . . . . . . . . . . . . . . 193.1.1 Measurement apparatus . . . . . . . . . . . . . . 193.1.2 Samples and sample contact . . . . . . . . . . . . 193.1.3 Electrical resistivity measurement .

Sujets

Informations

Publié par
Publié le 01 janvier 2004
Nombre de lectures 55
Langue English
Poids de l'ouvrage 2 Mo

Extrait

Magnon heat transport
and magnon-hole scattering in one
and two dimensions spin systems
Von der Fakult¨at fur¨ Mathematik, Informatik und
Naturwissenschaften der Rheinisch-Westf¨alischen
Technischen Hochschule Aachen zur Erlangung des
akademischen Grades eines Doktors der
Naturwissenschaften genehmigte Dissertation
Vorgelegt von
M.Sc.
Hanan Gouda Abd Elwahab Ahmed
ElHaes
¨aus Elkalyoubia - Agypten
Berichter: Universit¨atsprofessor Dr. Bernd Buc¨ hner
Universit¨ Dr. Gernot Gun¨ therodt
Tag der mundlic¨ hen Prufung:¨ 24. September 2004
Diese Dissertation ist auf den Internetseiten der
Hochschulbibliothek online verfugbar.¨Contents
1 Introduction 1
1
2 Transport properties in solid state physics 3
2.1Transportcoefficients.................... 3
2.1.1 Thermal conductivity . . . . . . . . . . . . . . . . 4
2.2 Kinetic theory of the thermal conductivity . . . . . . . . 5
2.2.1 Simple kinetic model . . . . . . . . . . . . . . . . 6
2.3 Different contributions to the thermal conductivity . . . 7
2.3.1 Phonon thermal conduction . . . . . . . . . . . . 7
2.3.2 Callaway model . . . . . . . . . . . . . . . . . . . 13
2.3.3 Electronic heat transport . . . . . . . . . . . . . . 13
2.3.4 Magnon thermal conduction . . . . . . . . . . . . 14
3 Experimental techniques 19
3.1 Transport measurements . . . . . . . . . . . . . . . . . . 19
3.1.1 Measurement apparatus . . . . . . . . . . . . . . 19
3.1.2 Samples and sample contact . . . . . . . . . . . . 19
3.1.3 Electrical resistivity measurement . . . . . . . . . 21
3.1.4 Thermal conductivityt . . . . . . . . 21
3.1.5 Experimental errors . . . . . . . . . . . . . . . . . 23
4 Material properties 26
4.1 Doped La CuO ....................... 262 4
4.1.1 Crystal structure . . . . . . . . . . . . . . . . . . 26
4.1.2 Electronic properties of La Sr CuO ...... 282¡x x 4
4.1.3 Magnetic properties of La Sr CuO ....... 312¡x x 4
4.1.4 Zn-doped La Sr CuO .............. 32¡x x 4
4.2 (Sr,Ca,La) Cu O .................... 3314 24 41
4.2.1 Crystal structure . . . . . . . . . . . . . . . . . . 33
4.2.2 Electric and magnetic properties. . . . . . . . . . 34
4.2.3 Influence of Ca doping . . . . . . . . . . . . . . . 36
iii CONTENTS
4.2.4 Influence La doping . . . . . . . . . . . . . . . . . 36
4.2.5 of Zn-doping . . . . . . . . . . . . . . . 36
4.2.6 Two-leg spin ladder . . . . . . . . . . . . . . . . . 37
5 Magnon thermal conductivity in low dimension spin sys-
tem 40
5.1 La CuO - a two-dimensional antiferromagnet. . . . . . . 402 4
5.2 (Sr,Ca,La) Cu O - a S = 1/2 spin ladder material . . 4414 24 41
6 Results 50
6.1 Sr-doped La CuO ..................... 502 4
6.1.1 Experimental results . . . . . . . . . . . . . . . . 50
6.1.2 Analysis and Discussion . . . . . . . . . . . . . . 52
6.2 Spin ladders I – Zn doping . . . . . . . . . . . . . . . . . 57
6.2.1 Experimental results . . . . . . . . . . . . . . . . 57
6.2.2 Analysis and discussion . . . . . . . . . . . . . . . 58
6.3 Spin ladders II – Ca doping (x•5)............ 67
6.3.1 Experimental results . . . . . . . . . . . . . . . . 67
6.3.2 Analysis and Discussion . . . . . . . . . . . . . . 70
6.4 Spin ladders III – Ca doping (x‚5)........... 73
6.4.1 Experimental results . . . . . . . . . . . . . . . . 73
6.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . 73
6.5Conclusion.......................... 78
7 Summary 79Chapter 1
Introduction
The magnetic heat conductivity κ of quasi low-dimensional spin sys-mag
tems such as antiferromagnetic S=1/2 chains, two-leg ladders and two
dimensionalantiferromagnetsiscurrentlyattractingtheinterestofmany
researchers, since they possess intriguing properties. For example, the
theoretical thermal Drude weight of the integrable XXZ chain with
S =1/2 is finite, i.e. there is no spinon-spinon interaction which de-
grades the thermal current and hence κ is infinite [1, 2, 3, 4, 5]. Formag
non-integrable systems like the two-leg S=1/2 spin ladder the situation
islessclear.Ononehanditiscurrentlyunderdebatewhetherthethermal
Drude weight is finite as in spin chains [6, 7, 8, 9]. After the initial sug-
gestionofafiniteDrudeweight[6]morerecenttheoreticalworksindicate
a vanishing Drude weight [7, 9]. In real systems, however, κ is alwaysmag
finiteduetointeractionsofthemagneticexcitationswithotherquasipar-
ticles and defects. Prominent experimental examples for magnetic heat
transport are the spin-ladder system (Sr,Ca,La) Cu O and the two-14 24 41
dimensional antiferromagnetic La CuO , where pronounced magnetic2 4
peaksareobservedinthetotalthermalconductivityκ=κ +κ (withph mag
κ thephononthermalconductivity)athighT [10,11,12,13,14].Theseph
high-T anomalies reflect the dimensionality of the underlying magnetic
structure, i.e., they are only observed when κ is measured along the di-
rection of ladders or, in the case of La CuO , parallel to the magnetic2 4
planes.Inbothcasesthetemperaturedependenceofκ atlowtemper-mag
aturesisquitewellunderstood.Heretemperatureindependentscattering
on static defects is dominating and the temperature dependence of κmag
is governed by the respective temperature dependent thermal occupa-
tion of magnons. At higher temperatures much less is known about the
originoftheobservedtemperaturedependenceofκ .Severaltempera-mag
ture dependent scattering processes with other quasiparticles like charge
carriers, magnons and phonons can play a role here.
At least since the discovery of high temperature superconductivity
12 Chapter 1: Introduction
[15] the magnetism of low dimensional spin systems is also of more gen-
eral interest. Magnetic excitations are considered as being responsible
for the hole pairing mechanism in the high temperature superconduc-
tors and model calculations of holes doped into an antiferromagnetic
background yield ground states which are in competition with supercon-
ductivity like the also experimentally observed stripe order. In two-leg
S=1/2 spinladders, which often are considered as toy systems allow-
ing a better understanding of high temperature superconductivity, the
role of magnetism for the charge dynamics is particularly demonstra-
tive. Hole pairing, the prerequisite for superconductivity results from
simple energetic arguments such as to lower the magnetic energy. Apart
from superconductivity also a hole pair-ordered ground state has been
predicted [16]. Superconductivity is indeed experimentally observed in
(Sr,Ca) Cu O which contains hole doped two-leg ladders [17]. Evi-14 24 41
dence for charge order in this material has been reported from optical
experiments[18,19,20].Itis,however,unclearwhetherthischargeorder
islocatedintheladdersorratherinthespinchains,whicharealsopresent
in this material and where charge ordering is well known [21, 22, 23].
In this work the interaction of magnetic excitations and charge car-
riers in the low dimensional spin systems (Sr,Ca) Cu O and slightly14 24 41
Sr-doped La CuO is investigated experimentally using the magnetic2 4
thermal conductivity as a probe. Thereby not only interesting informa-
tion about the nature of magnon hole scattering and the consequences
for κ is obtained. Also information about the charge ordering inmag
(Sr,Ca) Cu O can be achieved.14 24 41
The thesis is organized as follows. Chapter 2 gives basic information
abouttransportpropertiesinsolidswithafocusonthedifferentrelevant
contributions to the thermal conductivity, i.e., phononic and magnetic
heat conduction. An overview of the experimental techniques is provided
bychapter3.Therelevantpropertiesofthematerialsunderinvestigation
are discussed in chapter 4, followed by chapter 5, which summarizes the
startingpointsforthequestionsaddressedinthiswork.Theexperimental
results are presented and discussed in chapter 6.Chapter 2
Transport properties in solid
state physics
2.1 Transport coefficients
Thetransportofelectricchargeandheatinasolidstateisexamined.For
that purpose we consider a system of entropy carrying particles, which
is initially in equilibrium. The particles can interact with each other (for
example phonons, magnons) and also carry electric charge (for example
electrons). The system is not supposed to be isolated, therefore particle
currentsand/orentropycurrentscanenteroremerge.Onthissystem,lit-
tledisturbance(electricfield,temperaturegradient)areimposedcausing
flow of heat (and charge). If the external disturbances remain constant,
then the system will approach a stationary state (steady state) in which
the current is a function linearly in the disturbance (linear response).
In systems of free charge carriers, the entropy transport goes with the
transport of the charge. In the presence of a temperature gradient and
an electric field, the linear response of the electric current density j and
the thermal current density j are obtained in the form [24, 25]q
j=L E+L rT (2.1)11 12
j =L E+L rT (2.2)q 21 22
Where rT is the temperature gradient and E is the electrochemical
potential. If the tempt is equal to zero the flow of the
electric current in the sample is proportional with the electrical field,
j=σE. (2.3)
LinearresponsesmeansherethattheOhm’slawshouldhold,sothatσ is
independentonbothjandE.Comparisonofthisequationwithequation<

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents