Mathematically based management of Saccharomyces sp. batch propagations and fermentations [Elektronische Ressource] / Tomas Kurz
144 pages
Deutsch

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Mathematically based management of Saccharomyces sp. batch propagations and fermentations [Elektronische Ressource] / Tomas Kurz

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
144 pages
Deutsch
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Informations

Publié par
Publié le 01 janvier 2002
Nombre de lectures 24
Langue Deutsch
Poids de l'ouvrage 4 Mo

Extrait


Lehrstuhl für Fluidmechanik und Prozessautomation der Technischen
Universität München







Mathematically Based Management of
Saccharomyces sp. Batch Propagations and
Fermentations




Tomas Kurz




Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für
Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung
des akademischen Grades eines



Doktor-Ingenieurs (Dr.-Ing.)



genehmigten Dissertation.


Vorsitzender: Univ.-Prof. Dr. rer. nat. habil. R. F. Vogel

Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. habil. A. Delgado
2. Univ.-Prof. Dr.-Ing. E. Geiger
3. Prof. Dr.-Ir. A. Debourg / Freie Universität Brüssel
(schriftliche Beurteilung)

Die Dissertation wurde am 23.10.2002 bei der Technischen Universität München eingereicht
und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung
und Umwelt am 07.11.2002 angenommen.
II












This thesis was published with the same title in the series 14, number 112 of the “VDI
Fortschrittsberichte” (VDI proceedings) by the VDI Verlag, Düsseldorf.
ISBN 3-18-311214-0
III
Acknowledgements
This thesis was made from 1997 to 2002 at the “Lehrstuhl für Fluidmechanik und
Prozessautomation” at the “Technische Universität München”. My thank goes to all, who
have supported me in this time.
First, I want to thank Eva Fischer who supported and motivated me in an unique manner.
Especially, I want to thank my “Doktorvater” Prof. Dr.-Ing. A. Delgado for his confidence
and support. He made this work possible and allowed me wide academic freedom. I also want
to thank PD Dr.-Ing. T. Becker for his advice and my colleagues Dr.-Ing. E. Murnleitner and
Dr.-Ing. S. Arnold for the productive discussions.
I also wish to thank W. Seidl and J. Rohrer who supported me in construction of the pilot
plant, as well as A. Lorenz, who supported me in electrical affairs.
Parts of this work follow directly from master or students thesis. Here, I want to thank
Dipl.-Ing. T. Becher, Dipl.-Ing. J. Mieleitner and Dipl. Braum. T. Bollinger as well as D.
Wagenknecht, B. Balg, D. Wallerius and B. Huehnlein who supported this work in an
excellent manner. I also want to thank C. Mutzel and H. Teichert who supported this work as
collegiate assistants.
Industrial aspects of this work were notably supported by different breweries. Especially, I
want to thank Dr.-Ing. U. Peters, Dr.-Ing. G. Stettner, Dipl.-Ing.H. Wolfinger, Dipl.-Ing. F.
Peifer, Dipl.-Ing. W. Viehhauser and Dipl.-Ing. P. Winter.
I wish to thank Birgit and Marc McMahon as well as Katharina Fischer for the correction
concerning the English language.
Further, I wish to thank Prof. Dr.-Ing. E. Geiger and Prof. Dr.-Ir. A. Debourg for their
interest in my work and for their audit, as well as Prof. Dr. rer. nat. R.F. Vogel for taking the
chair of the examination board.
Parts of this work were supported by the Wissenschaftsförderung der Deutschen
Brauwirtschaft e.V. (B68).
Last, but not least, I wish to thank all my colleagues at the LFP for the friendly climate I
could experience here.

Freising, November 2002 Tomas Kurz

IV
























Meinen Eltern gewidmet.
For my parents.

V
Table of Contents
ABBREVIATIONS AND SYMBOLS .................................................................................... VIII
ABSTRACT............................................................................................................................. X
ZUSAMMENFASSUNG......................................................................................................... XI
PUBLICATIONS .................................................................................................................. XIII
1 INTRODUCTION AND CONCEPTIONAL FORMULATION .............................................1
1.1 Introduction ................................................................................................................................ 1
1.2 The scope of the thesis................................................................................................................ 3
2 BASIC CONSIDERATIONS ..............................................................................................4
2.1 Modelling..................................................................................................................................... 4
2.1.1 General considerations ..........................................................................................................4
2.1.2 Deterministic mathematical modelling ................................................................................. 5
2.1.2.1 Unstructured Models...................................................................................................... 7
2.1.2.2 Structured models .......................................................................................................... 9
2.1.2.3 Segregated models 9
2.1.3 Modelling approaches for temperature influence in biotechnology...................................... 9
2.1.3.1 Models of the Arrhenius type......................................................................................... 9
2.1.3.2 B ĕlehrádek type models............................................................................................... 14
2.2 Relevant aspects to Saccharomyces cerevisiae....................................................................... 15
2.2.1 Yeast metabolism ................................................................................................................15
2.2.1.1 Catabolism ................................................................................................................... 15
2.2.1.2 Anabolism and maintenance ........................................................................................ 19
2.2.1.3 Metabolism regulation phenomena.............................................................................. 19
2.2.2 Substrate uptake mechanisms.............................................................................................. 22
2.2.2.1 Sugar uptake................................................................................................................. 22
2.2.2.2 Oxygen uptake ............................................................................................................. 23
2.2.3 Yeast batch propagation and fermentation.......................................................................... 24
3 PRESENTATION AND DISCUSSION OF RESULTS.....................................................27
3.1 Mathematical modelling of Saccharomyces sp. metabolism................................................. 27
3.1.1 Requirements for the modelling approach 27
3.1.1.1 General requirements ................................................................................................... 27
3.1.1.2 Specific conditions in brewing industry....................................................................... 28
3.1.2 Existent modelling approaches for yeast growth and fermentation .................................... 29
3.1.3 Black-Box modelling approach........................................................................................... 30
3.1.3.1 Stoichiometry............................................................................................................... 32
3.1.3.2 Kinetics ........................................................................................................................33
3.1.4 Metabolic modelling approach............................................................................................ 38
VI
3.1.4.1 Stoichiometry............................................................................................................... 39
3.2 Validation of simulations of yeast propagations.................................................................... 43
3.2.1 Validation using literature data ........................................................................................... 44
3.2.2 Simulations of experiments A............................................................................................. 47
3.2.3 Simuents B 49
3.2.4 Simuents C 51
3.2.5 Simuents D 53
3.2.6 Sensitivity Analysis............................................................................................................. 54
3.3 Technological and mathematical validation of the influence of manipulated variables .... 64
3.3.1 Technological validation of the influence of temperature as manipulated variable............ 65
3.3.2 Modelling the temperature dependency of substrate and oxygen uptake kinetics and
specific growth rate............................................................................................................................ 69
3.3.2.1 Square-root- model .............................

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents