Respiratory motion correction on 3D positron emission tomography images [Elektronische Ressource] / vorgelegt von Mohammad Dawood
150 pages
English

Respiratory motion correction on 3D positron emission tomography images [Elektronische Ressource] / vorgelegt von Mohammad Dawood

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
150 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

InformatikRespiratory Motion Correction on 3D Positron EmissionTomography ImagesInaugural-Dissertationzur Erlangung des Doktorgradesder Naturwissenschaften im FachbereichMathematik und Informatikder Mathematisch-Naturwissenschaftlichen Fakultat¨der Westfalisc¨ hen Wilhelms-Universit¨at Munster¨vorgelegt vonMohammad Dawoodaus Tripoli- 2008 -Dekan: Herr Prof. Dr. Dr. h.c. Joachim CuntzErster Gutachter: Herr Prof. Dr. Xiayoi JiangZweiter Gutachter: Herr Prof. Dr. Michael Schafers¨Tag der Promotion:DedicationTo my parentsMohammad Yousuf Majoka and Khatija BegumAcknowledgmentsI would like to express my sincere thanks to Prof. X. Jiang and Prof. M. Schafers¨ forthe guidance and sound scientific advice that I have enjoyed during the whole period ofthis work. Similarly my thanks go to Dr. K.P. Schafers¨ for enabling me to work in themedical physics research group at the department of nuclear medicine in Munster which¨has been a pleasant and enriching experience and for his support in many other wayswhich includes the visits that lead to an exchange of experience with other researchers inthe field and helped in the improvement of this work.Many sincere thanks to my friend and colleague F. Buther, he has been at the center¨of the wonderful atmosphere in the group, along with T. Kosters,¨ M. Fieseler and N.Lang. They were all ever ready to help wherever they could. All of them also proof-readthe manuscript and proposed improvements.

Sujets

Informations

Publié par
Publié le 01 janvier 2008
Nombre de lectures 7
Langue English
Poids de l'ouvrage 3 Mo

Extrait

Informatik
Respiratory Motion Correction on 3D Positron Emission
Tomography Images
Inaugural-Dissertation
zur Erlangung des Doktorgrades
der Naturwissenschaften im Fachbereich
Mathematik und Informatik
der Mathematisch-Naturwissenschaftlichen Fakultat¨
der Westfalisc¨ hen Wilhelms-Universit¨at Munster¨
vorgelegt von
Mohammad Dawood
aus Tripoli
- 2008 -Dekan: Herr Prof. Dr. Dr. h.c. Joachim Cuntz
Erster Gutachter: Herr Prof. Dr. Xiayoi Jiang
Zweiter Gutachter: Herr Prof. Dr. Michael Schafers¨
Tag der Promotion:Dedication
To my parents
Mohammad Yousuf Majoka and Khatija BegumAcknowledgments
I would like to express my sincere thanks to Prof. X. Jiang and Prof. M. Schafers¨ for
the guidance and sound scientific advice that I have enjoyed during the whole period of
this work. Similarly my thanks go to Dr. K.P. Schafers¨ for enabling me to work in the
medical physics research group at the department of nuclear medicine in Munster which¨
has been a pleasant and enriching experience and for his support in many other ways
which includes the visits that lead to an exchange of experience with other researchers in
the field and helped in the improvement of this work.
Many sincere thanks to my friend and colleague F. Buther, he has been at the center¨
of the wonderful atmosphere in the group, along with T. Kosters,¨ M. Fieseler and N.
Lang. They were all ever ready to help wherever they could. All of them also proof-read
the manuscript and proposed improvements.Contents
Abstract 2
Outline 4
I Introduction 5
1 Instrumentation 7
1.1 CT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 PET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Formation of the raw data . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1.1 Event detection . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1.2 Estimation of coincidence . . . . . . . . . . . . . . . . . . 12
1.2.2 Data formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.2.1 Sinograms . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2.2 Listmode . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Acquisition modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 Measured LORs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.2 Effect on scatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.3 Effect on randoms . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 Factors limiting the resolution of PET . . . . . . . . . . . . . . . . . . . . 16
1.4.1 Positron range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.2 Non-Colinearity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.3 Detector size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5 PET/CT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.6 Biograph Sensation 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2 Image reconstruction 23
2.1 Data correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.1 Decay correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2 Dead time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.3 Arc correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.4 Crystal efficiency normalization . . . . . . . . . . . . . . . . . . . . 24
2.1.5 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.6 Attenuation correction . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Reconstruction algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 Radon transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
i2.2.2 Analytical reconstruction: FBP . . . . . . . . . . . . . . . . . . . . 28
2.2.3 Iterative OSEM . . . . . . . . . . . . . . . . . . . . 29
2.2.4 Listmode reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 30
3 Problem 31
3.1 Cardiac motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Respiratory motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Problem of in PET/CT . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Previous attempts on solving the problem . . . . . . . . . . . . . . . . . . 35
3.5 Our Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
II Gating 39
4 Gating Methods 41
4.1 Respiratory signal acquisition: Hardware . . . . . . . . . . . . . . . . . . . 42
4.2 Software . . . . . . . . . . . . . . . . . . . 43
4.3 gating methods . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.1 M1. Time based equal gates . . . . . . . . . . . . . . . . . . . . . . 47
4.3.2 M2. Time based variable gates . . . . . . . . . . . . . . . . . . . . 47
4.3.3 M3. Amplitude based equal gates. . . . . . . . . . . . . . . . . . . 48
4.3.4 M4. based variable gates . . . . . . . . . . . . . . . . . 49
4.3.5 M5. Cycle based equal amplitude gates . . . . . . . . . . . . . . . 49
4.3.6 M6+M7. Amplitude based methods with base line correction . . . 49
4.4 Patient data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.1 Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.2 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5 Results 53
5.1 Displacement of heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Noise properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6 Discussion of Results 57
6.1 Motion of heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3 Baseline correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
III Motion Correction 61
7 Optical Flow Algorithms 63
7.1 Registration Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 Non-Rigid Registration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.3 Optical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.3.1 Image Constraint Equation . . . . . . . . . . . . . . . . . . . . . . 66
7.3.2 Optical Flow Methods . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.3.3 Flow applications . . . . . . . . . . . . . . . . . . . . . . . 68
7.4 Local optical flow algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 697.5 Global optical flow algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.6 Combined local-global optical flow algorithm . . . . . . . . . . . . . . . . 72
7.7 Non-Quadratic approach to minimization of f . . . . . . . . . . . . . . 73LG
7.8 Preserving discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.8.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.9 Correcting for motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.10 Parameter optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.11 Test data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.11.1 Software phantom data . . . . . . . . . . . . . . . . . . . . . . . . 78
7.11.2 Patient data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.12 Criteria for measuring improvement . . . . . . . . . . . . . . . . . . . . . 81
7.12.1 Displacement of the heart . . . . . . . . . . . . . . . . . . . . . . . 81
7.12.2 Correlation coefficient . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.12.3 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.12.4 Significance test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8 Results 85
8.1 Phantom data: Proof of principle . . . . . . . . . . . . . . . . . . . . . . . 85
8.2 Patient data: Heart displacement . . . . . . . . . . . . . . . . . . . . . . . 86
8.3 Patient data: Correlation coefficient . . . . . . . . . . . . . . . . . . . . . 87
8.4 Patient data: Reduction in noise . . . . . . . . . . . . . . . . . . . . . . . 89
8.5 Patient data: Impact of noise . . . . . . . . . . . . . . . . . . . . . . . . . 89
9 Discussion of Results 93
9.1 Phantom data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
9.2 Patient data: Heart displacement . . . . . . . . . . . . . . . . . . . . . . . 93
9.3 Patient data: Correlation coefficients . . . . . . . . . . . . . . . . . . . . . 94
9.4 Influence of interpolation on CC . . . . . . . . . . . . . . . . . . . . . . . 94
9.5 Reduction in noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
9.6 Impact of noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.7 Parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
10 Multi-Resolution Method 97
10.1 Large Motion on PET Images . . . . . . . . . . . . . . . . . . . . . . . . . 97
10.2 Solution for Large Displacements . . . . . . . . . . . . . . . . . . . . . . . 98
10.2.1 Larger Window Size . . . . . . . . . . . . . . . . . . . . . . . . . . 98
10.2.2 Multi-Resolution approach . . . . . . . .

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents