La lecture en ligne est gratuite
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
Télécharger Lire

Etude de la déformation viscoélastique et plastique du PET amorphe et semi-cristallin autour de la

De
9 pages
Chapitre IV Rés ats et discussion 123 ultIV 3 2 Diffraction de rayons X aux grands anglesLa figure IV 50 représente le spectre de diffraction dans l’intervalle 8° 50° du PET semi cristallin non orienté [Bellare 93]. La maille élémentaire du PET est triclinique. Les plans()105 sont presque perpendiculaires à l'axe des chaînes. Les plans (100) sont parallèles auxplans phényliques sur les chaînes et les plans(010) font des angles de 80° et 59° avec les plans()105 et (100) respectivement [Cakmak 86].En plus des pics cristallins, on peut observer le halo amorphe dans les résultats de rayons X duPET [Murthy 96].Les figures IV 51, IV 52 et IV 53 comparent les résultats concernant la diffraction des rayonsX d'échantillons de PET (X =38%) déformés par bipoinçonnement à la température ambiante,cà 100° et à 130°C. Pour comparaison, le résultat relatif au PET non déformé =38%) est(Xcsuperposé.Figure IV 50 Spectre de diffraction RX du PET semi cristallin non orienté indiquant lesindices de Miller des réflexions du cristal.124 Chapitre IV Rés ats et discussion ultPour chaque échantillon de PET, on peut observer trois pics (massifs) caractéristiques de laphase triclinique. La largeur de ces pics révèle une petite taille de cristaux et un ...
Voir plus Voir moins
Chapitre IV Résultats et discussion123
IV-3-2- Diffraction de rayons X aux grands angles
La figure IV-50 représente le spectre de diffraction dans l’intervalle 8°-50° du PET semi-cristallin non orienté [Bellare 93]. La maille élémentaire du PET est triclinique. Les plans
(105) sont presque perpendiculaires à l'axe des chaînes. Les plans (100) sont parallèles aux plans phényliques sur les chaînes et les plans(010) font des angles de 80° et 59° avec les plans
(105) et (100) respectivement [Cakmak 86].
En plus des pics cristallins, on peut observer le halo amorphe dans les résultats de rayons X du
PET [Murthy 96].
Les figures IV-51, IV-52 et IV-53 comparent les résultats concernant la diffraction des rayons
X d'échantillons de PET (Xc=38%) déformés par bipoinçonnement à la température ambiante, à 100° et à 130°C. Pour comparaison, le résultat relatif au PET non déformé (Xc=38%) est superposé.
Figure IV-50Spectre de diffraction RX du PET semi-cristallin non orienté indiquant les
indices de Miller des réflexions du cristal.
124Chapitre IV Résultats et discussion
Pour chaque échantillon de PET, on peut observer trois pics (massifs) caractéristiques de la phase triclinique. La largeur de ces pics révèle une petite taille de cristaux et un certain désordre para cristallin.
900 800 700 600 500 400 300 200 100 0 8
13
18
(bipoinçon. à T=22°C)
23
28 33 2q
38
43
48
a b c
d
53
Figure IV-51Spectres de diffraction X du PET semi-cristallin déformé jusqu’à 50% en
bipoinçonnement à la température ambiante (balayage dans le plan XOY, voir figure III-2) :
(a)-e10 %,(b)-e1. %,(c)-e11, %,(d)-e1+0 %,(e)-Support d’échantillon= pâte à modeler
600
500
400
300
200
100
0 8
13
chargé carbonate calcium.
18
(bipoinçon. à T=100°C)
23
28 33 2q
38
43
48
a
b
c
53
Figure IV-52Spectres de diffraction des rayons X du PET semi-cristallin déformé jusqu’à
50% en bipoinçonnement à la température de 100°C (balayage dans le plan XOY) :
(a)-e10 %,(b)-e1+0 %et 1 hr de relaxation,(c)-Support d’échantillon= pâte à modeler avec
charge minérale inconnue.
Chapitre IV Résultats et discussion125
Ces figures ne montrent pas de différence perceptible, ce qui indique que la majeure partie des lamelles cristallines ne sont pas affectées par la déformation malgré les changements observés en DSC concernant les petits cristallites. Cependant, les massifs de diffraction s’élargissent quelque peu avec l'augmentation de la déformation pour les échantillons déformés à la température ambiante et à 100°C. Ceci indique une diminution du "degré de cristallinité" avec l'augmentation de la déformation jusqu' à 50%, pour ces deux températures.
Par contre à 130°C (figure IV-53), il semble que l’intensité des pics de diffraction change très
peu pour les échantillons déformés et relaxés. Ceci indique que la déformation affecte peu la
perfection cristalline à cette température.
600
500
400
300
200
100
0 8
13
18
(bipoinçon. à T=130°C)
23
28 33 2q
38
43
48
b
c d
53
Figure IV-53Spectres de diffraction des rayons X du PET semi-cristallin déformé jusqu’à
50% en bipoinçonnement à la température ambiante (balayage dans le plan XOY) :
(a)-e10 %,(b)-e1+0 %,(c)-e1+0 %et 1 hr de relaxation,(d)-Support d’échantillon= pâte à
modeler avec charge minérale inconnue.
Des expériences de rayons X ont été également exécutées sur les échantillons de PET (Xc=38%) déformés à la température ambiante et à 100°C par traction. Les figures IV-54 et IV-55 montrent les résultats de rayon X pour l'échantillon déformé à la température ambiante et à 100°C, respectivement. Pour comparaison, les résultats de rayons X
du PET non déformé (Xc=38%) et le support de l'échantillon sont superposés.
126Résultats et discussionChapitre IV
800 700 600 500 400 300 200 100 0 8
13
18
(Traction à T=24°C)
23
28 33 2q
38
43
48
a
53
Figure IV-54Spectres de diffraction des rayons X du PET semi-cristallin déformé jusqu’à
rupture en traction à la température ambiante (balayage équatorial) :(a)-Zonedéformée
jusqu’à rupture,(b)-Non déformé,(c)-Support d’échantillon= pâte à modeler chargé
1800 1600 1400 1200 1000 800 600 400 200 0 8
13
18
carbonate calcium.
(Traction à T=100°C)
23
28 33 2q
38
43
48
53
Figure IV-55Spectres de diffraction des rayons X du PET semi-cristallin déformé en traction
à la température de 100°C (balayage équatorial) :(a)-Zo
nedéformée jusqu’à rupture
Dl/l0=6.5,(b)-Dl/l0=1,(c)-Non déformé,(d)-Support d’échantillon= pâte à modeler chargé
carbonate calcium.
Ce profil de diffraction correspond à la phase mésomorphe du PET [Parravicini 94]. Il semble donc que la déformation plastique de la phase cristalline au dessous de Tgun provoque
Chapitre IV Résultats et discussion127
désordre considérable. Par contre, à 100°C, la mobilité moléculaire permet une réorganisation
de la phase ordonnée puisque les raies caractéristiques du PET cristallins (figures IV-55) sont
observables pour un échantillon étiré jusqu’à la rupture. L’absence de la raie ( 1 05) à 2q=43°
traduit l’orientation des chaînes parallèlement à la direction de traction. Avec l'augmentation de la déformation àDl/l0=6.5, les intensités des pics cristallins dans le domaine 15-28° augmentent à cette température. Ceci confirme l’orientation de la phase cristalline avec l'augmentation de la déformation, par la suite de la cristallisation induite sous
contrainte. Ceci augmente la taille et le degré de perfection de cristallites. Ceci est également
en accord avec les résultats de DSC (figure IV-46).
IV-4- Conclusion
Etude du comportement viscoélastique
Le comportement mécanique dynamique du PET amorphe et semi-cristallin a été étudié sur
l’intervalle de température 100-400 K et aux trois fréquences 0.01, 0.1 et 1 Hz. L'influence de
la phase cristalline sur le comportement viscoélastique du PET peut être résumée comme suit : - les échantillons semi-cristallins montrent une diminution de l’amplitude de la relaxationb par rapport à l’état amorphe. Il est aussi confirmé que cette relaxation a lieu dans la phase amorphe et son amplitude dépend donc du taux de cristallinité. La présence de la phase cristalline diminue l’amplitude de la relaxationbde manière non-linéaire.
- la relaxationarésulte de mouvements collectifs des unités structurales ; la relaxationaPET semi-cristallin est décalée vers les températures plus élevées, ce qui du pourrait provenir des modifications de la mobilité moléculaire des chaînes macromoléculaires
situées à la proximité des entités cristallines. - la forte diminution de l’intensité de la relaxation mécanique principale résulte essentiellement de l'effet de renfort de la phase amorphe par les cristallites.
Etude du comportement plastique
- bipoinçonnement Le comportement thermomécanique des échantillons PET amorphe et semi-cristallin (Xc=38%) a été étudié autour de la température de transition vitreuse pour une vitesse de
128Chapitre IV Résultats et discussion
-3 -1 déformation voisine de 10 s . Dans ces conditions, les PET amorphe et semi-cristallin
montrent un comportement mécanique ductile. Au passage de la température de la relaxationa, on observe une chute des modules et une chute des contraintes d’écoulement plastique pour les deux matériaux. Ces chutes sont moins
fortes et sont déplacées vers les hautes températures dans le cas du PET semi-cristallin suite à
l’effet de renfort, et de la réticulation par la phase cristalline. Le comportement mécanique en bipoinçonnement ou en traction peut être relié au comportement mécanique dynamique par équivalence entre la fréquence des mesures mécaniques dynamiques et la vitesse de
déformation d’essai de bipoinçonnement ou de traction.
- mesure des paramètres d’activation de la plasticité Nous avons déterminé les paramètres physiques Vexp,DHexp etmpour tenter de préciser les mécanismes de déformation dans le PET amorphe et semi-cristallin autour de sa transition vitreuse. En dessous de Tg, les paramètres d’activation de la déformation plastique du PET semi-cristallin sont du même ordre de grandeur que ceux calculés pour le PET amorphe. Par conséquent, on peut conclure qu’en dessous de Tg, la phase cristalline ne modifie pas les mécanismes moléculaires ou la longueur des segments des chaînes impliquées dans le comportement mécanique. Cette phase induit seulement un effet de renfort de la phase amorphe.
Au dessus de Tg, l’énergie d’activation du PET semi-cristallin est indépendante de la température. En outre, la chute de la contrainte d’écoulement au plateau,sp, du PET semi-cristallin est monotone avec la température. Ceci suggère que la résistance plastique du PET semi-cristallin avec la température peut être reliée pour une grande part à une propriété
intrinsèque de la composante cristalline outre l’effet de réticulation de la phase amorphe. En d’autre termes, la déformabilité du PET semi-cristallin est régie non seulement par les propriétés mécaniques de la phase amorphe mais également par l’aptitude à la déformation plastique de la phase cristalline, qui est contrôlée par la densité et la mobilité des dislocations. Il a déjà été montré que la génération thermique de dislocations est possible dans des cristaux
polymères en raison de leur faible épaisseur. Au dessus de Tg, la compréhension de l’évolution des paramètres d’activations, ne peut se faire que par la prise en compte de l’état microstructural dans lequel se trouve le matériau pendant la déformation.
Chapitre IV Résultats et discussion129
- traction Le comportement mécanique du PET amorphe et semi-cristallin en traction a été étudié à la -3 -1 température ambiante jusqu' à 100°C pour une vitesse de déformation d’environ 10 s .
L’allure des courbes en traction est comparable à celles de bipoinçonnement. Mais la valeur
de la contrainte à la limite élastique,sy, est toujours plus faible en traction, dans les mêmes conditions expérimentales. Cependant, si on compare l’écart entre les valeurs de contrainte au seuil de plasticité en traction et en bipoinçonnement pour les deux matériaux (amorphe et semi-cristallin), cet écart est plus grand pour le PET semi-cristallin quelle que soit la
température. En traction, an effet de striction apparaît dans tous les cas, mais cet effet diminue avec l'augmentation de la température, et la déformation devient de plus en plus homogène. Dans le cas du PET amorphe, le seuil d’écoulement plastique disparaît au-dessus de Tgla et contrainte augmente de façon monotone avec la déformation. Le comportement du matériau est alors celui d’un caoutchouc.
L'évolution de la contrainte à la limite élastique et l'élongation jusqu'à la rupture avec l'augmentation de la température montrent des comportements comparables pour les deux matériaux mais un niveau desyplus élevé pour le PET semi-cristallin tandis que la valeur de l’élongation à la rupture (Dl/l0) est plus faible. Donc, pour mieux comprendre les mécanismes de déformation dans le PET semi-cristallin, on a caractérisé l’état microstructural du matériau déformé autour de Tgpar DSC et rayons X.
Caractérisation par DSC de l’état microstructural du matériau déformé autour de Tg La présence de pics de fusion multiples dans les échantillons de PET semi-cristallin révèle une distribution multimodale de la taille des lamelles. Une telle distribution multimodale indique notamment l’existence de petites et grandes épaisseurs des lamelles, les plus petites étant situées à la périphérie des sphérolites, entre les grandes lamelles. Il est plus facile de cisailler ces petits cristaux qui sont alors désorganisés, conduisant à une diminution du pic de fusion à basse température. En effet, la recristallisation des chaînes étirées est empêchée au dessous de Tg, par suite de la faible mobilité moléculaire. Par contre, au dessus de Tg, la relaxation des chaînes permet une cristallisation induite sous contrainte. Ainsi, l’énergie stockée sous forme anélastique dans le matériau déformé au
130Résultats et discussionChapitre IV
dessous de Tg est supérieure à celle du même matériau déformé au dessus de Tgà (c.-à-d. 100°C). La recristallisation induite sous contrainte semble se faire au bénéfice des lamelles épaisses
peu affectées, sur le plan thermique, par la déformation. Lors de la transformation fibrillaire
qui accompagne la striction, les chaînes amorphes orientées issues des petits cristaux détruits recristallisent de façon épitaxiale sur les blocs cristallins issus des grosses lamelles fragmentées mais pas détruites.
Caractérisation de l’état microstructural du matériau déformé autour de Tgpar rayon X L’allure des spectres de diffraction X montre qu’il n y a pas de modification majeure sur le plan cristallographique entre les échantillons de PET déformés jusqu' à 50% en bipoinçonnement. Ceci indique que la maille cristalline n’est pas affectée par les modifications structurales des petits cristallites. Cependant, la largeur des pic de diffraction et le halo amorphe augmentent avec l'augmentation de la déformation. Ceci indique une diminution du degré de cristallinité avec
l'augmentation de la déformation jusqu'à 50%. Ceci corrobore des conclusions de l’étude DSC
concernant la destruction partielle des petits cristallites.
La zone déformée jusqu’à rupture en traction à température ambiante, ne montre aucun pic de
réflexion. Ceci indique que les cristallites sont considérablement affectés par la déformation
qui modifie l’arrangement cristallographique des chaînes en structure mésomorphe.
Pour l'échantillon de PET déformé en traction à 100°C, les lamelles cristallines se réorientent
parallèlement à la direction de déformation. En outre, la taille et le degré de la perfection des
cristallites sont augmentés par le processus de la cristallisation induite sous contrainte.
Problèmes posés
Nous avons présenté dans ce chapitre quelques aspects du comportement mécanique du PET
dans les domaines linéaire et non-linéaire. On a vu que la phase cristalline peut diminuer l’amplitude de la relaxationb d’une manière non-linéaire. Par quelle loi peut-on rendre compte de cette variation de l’amplitude de relaxationbavec le taux de cristallinité?
D’autre part, l’influence de la cristallinite sur les caractéristiques de la relaxationa est plus
complexe que dans le cas de la relaxationb. La relaxationarelève du caractère collectif des
mouvements moléculaires. La phase cristalline diminue l’amplitude de la relaxationala et décale vers les hautes températures. Le modèle développé par Perez [Perez 92], reposant sur
Chapitre IV Résultats et discussion131
des bases physiques, peut être utilisé pour essayer de reproduire et d’interpréter la relaxationa
du PET amorphe.
Or, la phase amorphe dans le PET semi-cristallin n’a pas les mêmes caractéristiques que dans le PET complètement amorphe, surtout dans le domaine de la relaxationa. On peut se poser la question sur le comportement intrinsèque de la phase amorphe dans le PET semi-cristallin,
dans le domaine linéaire de la relaxationa.
Le même modèle physique peut être étendu pour décrire le comportement non-linéaire des polymères amorphes. Quelles sont les lois de variation deDHexpV et exp en fonction de la température à partir de ce modèle? Enfin, comment peut-on modéliser la courbe contrainte-déformation du PET semi-cristallin
dans le domaine non-linéaire avec des hypothèses simplificatrices reposant sur des passages
micro-macro?
Trouver des réponses à ces questions sera l’objectif du prochain chapitre.