The contribution of the sodium channel subunit NaV1.6 to neuronal excitability [Elektronische Ressource] / Michael Winfried Royeck
93 pages
Deutsch

The contribution of the sodium channel subunit NaV1.6 to neuronal excitability [Elektronische Ressource] / Michael Winfried Royeck

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
93 pages
Deutsch
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

The contribution of the sodium channel subunit Na 1.6 to neuronal excitability V Dissertation zur Erlangung des Doktorgrades (Dr.rer.nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen-Friedrich-Wilhelms-Universität Bonn vorgelegt von Michael Winfried Royeck aus Püttlingen Bonn 2009 Acknowledgements II Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn. Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn unter http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert. Erscheinungsjahr: 2010 Erstgutachter: Prof. Dr. Heinz Beck Zweitgutachter: Prof. Dr. Horst Bleckmann Tag der Promotion: 23.Februar 2010 Acknowledgements III There are known knowns. There are things we know that we know. There are known unknowns. That is to say, there are things that we now know we don’t know. But there are also unknown unknowns. There are things we do not know we don’t know. Donald Rumsfeld, Former US Defense Secretary on February 12, 2002 Acknowledgements IV Acknowledgements Ich möchte mich bei Prof. Dr. Heinz Beck bedanken, für die ausgezeichnete Unter-stützung, seinen Einsatz und die Möglichkeit in seinem spannenden Labor zu promo-vieren. Ich möchte mich bei Prof. Dr. Horst Bleckmann bedanken, dass er meine Promoti-on naturwissenschaftlich betreut hat. Ich möchte mich bei Prof. Dr.

Sujets

Informations

Publié par
Publié le 01 janvier 2010
Nombre de lectures 32
Langue Deutsch
Poids de l'ouvrage 2 Mo

Extrait

The contribution of the sodium channel
subunit NaV1.6 to neuronal excitability
Dissertation
zur
Erlangung des Doktorgrades (Dr.rer.nat.)
der
Mathematisch-Naturwissenschaftlichen Fakultät
der
Rheinischen-Friedrich-Wilhelms-Universität Bonn
vorgelegt von
Michael Winfried Royeck
aus
Püttlingen
Bonn 2009
Acknowledgements
II
Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn. Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn unterptthh//:u.ssu.blsi_sedd/no.ninb-neonlielektronisch publiziert.
Erscheinungsjahr: 2010
Erstgutachter:
Zweitgutachter:
Prof. Dr. Heinz Beck
Prof. Dr. Horst Bleckmann
Tag der Promotion: 23.Februar 2010
Acknowledgements
III
There are known knowns. There are things we know that we know. There are known unknowns. That is to say, there are things that we now know we don’t know. But there are also unknown unknowns. There arethings we do not know we don’t know.Donald Rumsfeld, Former US Defense Secretary on February 12, 2002
Acknowledgements
Acknowledgements
IV
Ich möchte mich bei Prof. Dr. Heinz Beck bedanken, für die ausgezeichnete Unter-
stützung, seinen Einsatz und die Möglichkeit in seinem spannenden Labor zu promo-
vieren.
Ich möchte mich bei Prof. Dr. Horst Bleckmann bedanken, dass er meine Promoti-
on naturwissenschaftlich betreut hat.
Ich möchte mich bei Prof. Dr. Susanne Schoch-McGovern bedanken, für ihre Un-
terstützung, ihren Einsatz und die Zusage als Prüferin zu fungieren.
Ich möchte mich bei Prof. Dr. Walter Witke bedanken, für die Zusage als Prüfer zu
fungieren.
Ich möchte mich bei allen jetzigen und ehemaligen Kollegen des Nervenzentrums,
insbesondere den Mitgliedern der Arbeitsgruppen Beck, Schoch und Becker, dafür
bedanken, dass Ihr die Zeit meiner Promotion zu dem gemacht habt was sie war und
mir auf vielseitige Weise geholfen habt.
Zusätzlich möchte ich mich bedanken bei Dr. Julika Pitsch, Marie-Therese
Horstmann, Elena Alvarez-Baron Fuentes, Dr. Thoralf Opitz, Roland Krüppel, Boris
Chagnaud und Tobias Mittelstaedt für die Korrekturen, Ratschläge und Hilfen während
der Promotion.
Zuletzt möchte ich mich bedanken, bei meinen Eltern, meiner Familie, meinen
Freunden und Trixy. Ihr habt mich immer unterstützt.
Table of Contents
Table of Contents
V
Acknowledgements................................................................................................... IV
Table of Contents ....................................................................................................... V
Index of Figures ...................................................................................................... VIII
Index of Tables ........................................................................................................... X
Abbreviations ............................................................................................................ XI
Abstract ................................................................................................................... XIII
1.1.11.21.31.41.51.61.71.81.9
2.2.12.1.12.1.22.22.2.1
2.2.2
2.32.3.12.42.4.12.4.22.52.5.12.5.2
Introduction ......................................................................................................1Action potentials and intrinsic membrane properties ...........................................1Voltage gated Na+channels ...............................................................................1Subcellular distribution of Na+channel subunits .................................................4Types of Na+..........4....................................................................rrcu........stne...Initiation of action potentials ...............................................................................6Hippocampus .....................................................................................................8The CA1 pyramidal neuron...............................................................................10Mesial temporal lobe epilepsy ..........................................................................12Aim of the study................................................................................................13
Materials and methods...................................................................................14Experimental animals .......................................................................................14Functionally NaV1.6 deficient micetheScn8amedmutation .............................14The pilocarpine model of temporal lobe epilepsy ..............................................14Preparation of brain tissue................................................................................15Preparation of brain tissue from mice and rats for electrophysiological experiments......................................................................................................15Preparation of rat brain tissue and subfield microslices for biochemical analysis ............................................................................................................15
Immunohistochemistry......................................................................................16Analysis of immunohistochemistry ....................................................................16Quantitative real-time RT-PCR .........................................................................17Preparation of cDNA and probes ......................................................................17Analysis of mRNA expression ..........................................................................18Western blotting of Na+..................................h.c.n.a.e.n.s.l.............................81Sample preparation ..........................................................................................18SDS gel electrophoresis and immuno-blotting ..................................................18
Table of Contents
VI
2.6Electrophysiology and computational Modelling ...............................................192.6.1Shared procedures ...........................................................................................192.6.2 .................................................................................19Voltage clamp recordings2.6.3Determination of passive membrane properties................................................202.6.4Recording of the transient Na+................................................curr....ent2..0........2.6.5Recording of the persistent Na+current ............................................................202.6.6Analysis of voltage clamp recordings of Na+currents .......................................212.6.7Recording of T-type Ca2+currents ....................................................................212.6.8Analysis of voltage clamp recordings ofT-type Ca2+currents ...........................212.6.9Current clamp recordings .................................................................................222.6.10Analysis of current clamp recordings ................................................................222.7Cell-attached recordings of discharge behaviour ..............................................232.8 .............................................23Computational modelling of a CA1 pyramidal cell2.9 .......................................................................23Statistical analysis and software
3.3.1
3.23.33.43.53.63.73.83.93.103.113.123.133.14
3.15
4.4.14.24.34.44.5
4.6
Results ............................................................................................................24Subcellular distribution of Na+channels in the CA1 region of the hippocampus ....................................................................................................24Absence of NaV1.6 positively shifts INaT..............26...............................caitnoitavAbsence of NaV1.6 reduces the persistent Na+currentINaP...............................28Lack of compensatory changes in ICaT............03..................................................Reduced spontaneous firing in the absence of functional NaV1.6 subunits .......30NaVsubunits contribute to setting spike threshold in CA1 pyramidal cells ...321.6 Spike afterdepolarization in CA1 pyramidal cells lacking NaV1.6 ......................34NaV1.6 subunits contribute to spike gain...........................................................35NaVsubunits contributes to action potential initiation1.6  ...................................36Computer simulations of spike initiation at the AIS ...........................................39Na+channel mRNA expression following status epilepticus..............................45Na+channel protein expression following status epilepticus .............................46Axonal localization of Na+channels and NaV1.6 following status epilepticus ....47Changes in Na+of CA1 pyramidal neurons following statuscurrents epilepticus ........................................................................................................49Discharge behavior of CA1 pyramidal neurons following status epilepticus ......51
Discussion ......................................................................................................54Neuronal expression and subcellular localization of NaV....45........................6..1.The role of axonal NaVchannels in action potential initiation .......................541.6 The contribution of Na+currents to spike gain ..................................................57The contribution of Na+currents to the spike afterdepolarization ......................58
Compensatory or homeostatic changes in mice lacking functional NaV1.6 channels...........................................................................................................59Na+ ......................................................................59channels in chronic epilepsy
Table of Contents
4.7
4.8
5.
6.
7.
8.
VII
Modulation of persistent Na+currents by intracellular spermine........................61
Changes in intrinsic firing properties in chronic epilepsy ...................................61
References ......................................................................................................63
Contributions..................................................................................................78
Curriculum vitae .............................................................................................79
Erklärung ........................................................................................................80
Index of Figures
Index of Figures
VIII
Figure 1-1: General structure of voltage gated Na+channel α-subunits.........................2Figure 1-2: The transient, persistent, and resurgent Na+current...........................5........
Figure 1-3: Morphology of the hippocampal formation.9..................................................Figure 1-4: Morphology of the CA1 pyramidal neuron.............................11....................Figure 3-1: Axoninitial segment localization of Na+channels in central neurons of Scn8amedand Scn8awtmice...........................................................25...................
Figure 3-2: Semi-quantitative analysis of fluorescence intensity of PanNaVrelative to Ankyrin G in slices obtained from Scn8amedand Scn8awtmice..............26.......
Figure 3-3: Voltage dependence of activation of INaTin CA1 pyramidal neurons is shifted in the depolarizing direction inScn8amedmice.................8..2....................Figure 3-4: Reduction of the persistent Na+current (INaP) in Scn8awtand Scn8amedCA1 pyramidal neurons....29................................................................................Figure 3-5: T-type Ca2+(ICaT) current amplitude is unaltered in CA1 pyramidal cells of Scn8amedmice.03.............................................................................................Figure 3-6: Discharge behavior of Scn8awtand Scn8amedneurons recorded in cell-attached configuration....................................................................13..................
Figure 3-7: Spike threshold of CA1 pyramidal neurons recorded in the slice preparation is increased in Scn8amedmice.......................................33................Figure 3-8: The spike afterdepolarization in Scn8amedand Scn8awtmice.....34................
Figure 3-9: The gain of CA1 neurons is decreased in the absence of NaV1.6 channels36..............................................................................................Figure 3-10: Spike initiation in Scn8awtand Scn8amedmice..73.......................................
Figure 3-11: Altered delay between axonal and somatic components and steepness of spike initiation in Scn8amedand Scn8awtmice..............................83Figure 3-12: Transient Na+current ()and itsvoltage dependenceof activation
of in the CA1 neuron model. ............................................................................39Figure 3-13: Spike parametersof modelled action potentials..................40....................Figure 3-14: Influence of transient AIS Na+current density and voltage dependence on spike initiation.........................................14................................Figure 3-15: Influence of transient AIS Na+current density and voltage dependence on spike initiation with a 60% reduction of persistent Na+current..............................................................43...............................................Figure 3-16: Influence of transient AIS Na+current density and voltage dependence on spike initiation with a 60% reduction of persistent Na+current only at the AIS........................................4..............4................................Figure 3-17: Na+channel α-subunit mRNA expression in the CA1 region after status epilepticus.................................................................................64............Figure 3-18: Na+channel content in CA1 microslices after experienced status epilepticus........................................................................................47................Figure 3-19: Unchanged axonal aggregation of Na+channel α-subunits in the hippocampus proper following status epilepticus...........................4....8...............
Figure 3-20: Axonal aggregation of NaV1.6 in the hippocampus proper following status epilepticus.............................................................................................94Figure 3-21: Increase in the persistent Na+current 12-20 d after status epilepticus5.....0
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents