test haproxy public
8 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

test haproxy public

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
8 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Image Cluster Compression using Partitioned Iterated Function Systems and efficient Inter Image Similarity Features Matthias Kramm Technical University of Munich Institute for Computer Science Boltzmannstr. 3 D 85748 Garching Email: kramm@in.tum.de Abstract—When dealing with large scale image archive sys compression rate of the individual images), which limits the tems, efficient data compression is crucial for the economic size of possible image groups. storage of data. Currently, most image compression algorithms Inthispaper,wepresentanovelalgorithmforimagegroups, only work on a per picture basis — however most image which is based on PIFS compression [6], and thus managesdatabases (both private and commercial) contain high redundan to exploit several high level redundancies, in particular scaledcies between images, especially when a lot of images of the same objects, persons, locations, or made with the same camera, exist. image parts. Inordertoexploitthosecorrelations,it’sdesirabletoapplyimage Compression of image sequences using PIFS was done compression not only to individual images, but also to groups of previously (in the context of video compression) in [7], [8]. images, in order to gain better compression rates by exploiting However, in these papers, both the frames/images contributinginter image redundancies.

Informations

Publié par
Publié le 27 novembre 2012
Nombre de lectures 2
Langue English
Poids de l'ouvrage 1 Mo

Extrait

ImageClusterCompressionusingPartitionedIteratedFunctionSystemsandefficientInter-ImageSimilarityFeaturesMatthiasKrammTechnicalUniversityofMunichInstituteforComputerScienceBoltzmannstr.3D-85748GarchingEmail:kramm@in.tum.deAbstract—Whendealingwithlargescaleimagearchivesys-compressionrateoftheindividualimages),whichlimitsthetems,efficientdatacompressioniscrucialfortheeconomicsizeofpossibleimagegroups.storageofdata.Currently,mostimagecompressionalgorithmsInthispaper,wepresentanovelalgorithmforimagegroups,onlyworkonaper-picturebasis—howevermostimagedatabases(bothprivateandcommercial)containhighredundan-whichisbasedonPIFScompression[6],andthusmanagesciesbetweenimages,especiallywhenalotofimagesofthesametoexploitseveralhigh-levelredundancies,inparticularscaledobjects,persons,locations,ormadewiththesamecamera,exist.imageparts.Inordertoexploitthosecorrelations,it’sdesirabletoapplyimageCompressionofimagesequencesusingPIFSwasdonecompressionnotonlytoindividualimages,butalsotogroupsofpreviously(inthecontextofvideocompression)in[7],[8].images,inordertogainbettercompressionratesbyexploitingHowever,inthesepapers,boththeframes/imagescontributinginter-imageredundancies.Thispaperproposestoemployamulti-imagefractalPartitionedtoonecompressiongroupaswellastheorderofthoseimagesIteratedFunctionSystem(PIFS)forcompressingimagegroupsispredeterminedbythevideosequence.Furthermore,imagesandexploitingcorrelationsbetweenimages.Inordertopartitionneedtobeofthesamesize,whichcan’tbeassumedformostanimagedatabaseintooptimalgroupstobecompressedwiththisalgorithm,anumberofmetricsarederivedbasedonthereal-worldimagedatabases.Here,wespecifyamulti-imagenormalizedcompressiondistance(NCD)ofthePIFSalgorithm.PIFSalgorithmwhichworksonimagesofarbitrarysizes,andWecompareanumberofrelationalandhierarchicalclusteringalsoallowstoclusterimagedatabasesintogroupssothatalgorithmsbasedonthesaidmetric.Inparticular,weshowhowacompressionofeachgroupisoptimized.reasonablegoodapproximationofoptimalimageclusterscanbeTherestofthispaperisorganizedasfollows:WefirstderiveobtainedbyanapproximationoftheNCDandnCutclustering.themulti-imagePIFSalgorithmbygeneralizingthesingle-WhiletheresultsinthispaperareprimarilyderivedfromPIFS,theycanalsobeleveragedagainstothercompressionalgorithmsimagePIFSalgorithm.Wealsodescribeawaytooptimizesaidforimagegroups.algorithmusingDFTlookuptables.Afterwards,wetakeontheproblemofcombiningthe“right”imagesintogroups,byI.INTRODUCTIONfirstdescribingefficientwaystocomputeadistancefunctionbetweentwoimages,andthen,inthenextsession,comparingExtendingimagecompressiontomultipleimageshasnotanumberofclusteringalgorithmsworkingonsuchadistance.attractedmuchresearchsofar.TheonlyexceptionsaretheThenalalgorithmisevaluatedbycompressionrunsoveraareasofhyperspectralcompression[1][3]and,ofcourse,photodatabaseconsistingof3928images.videocompression[4],whichbothhandlethespecialcaseofcompressinghighlycorrelatedimagesofexactlythesameII.THECOMPRESSIONALGORITHMsize.PIFSalgorithmsworkbyadaptivelysplittinganimageIConcerninggeneralizedimagegroupcompression,were-intoanumberofnon-overlappingrectangularrangeblockscentlyresearchedanalgorithmwhichworksbybuildingaR1...Rn(usingaquadtreealgorithmwithanerrorthresholdspecialeigenimagelibraryforextractingprincipalcomponentmax),andthenmappingeachrangeblockRontoa“domain”basedsimilaritiesbetweenimages.blockD(withDbeingselectedfromanumberofrectangularWhilethealgorithmpresentedin[5]isquitefast,andoverlappingdomainblocksD1,...,Dmfromthesameimage)managestomergelow-scaleredundancyfrommultipleimages,whichisscaledtothedimensionsofRbyanaffinetransform,itfailstodetectmoreglobalscaleredundancies(inparticular,resultinginablockDˆ,andishenceforthprocessedbyasimilarimagepartswhicharebothtranslatedandscaled),contrastscalingcandaluminanceshiftl:andalsohastheproblemofbecoming“saturated”quitefast(i.e.,themoreimagesinagroup,theworsetheadditionalRxy=cDˆxy+l(1)
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents