Metallo-supramolecular architectures based on multifunctional N-donor ligands [Elektronische Ressource] / von Harold Brice Tanh Jeazet
241 pages
English

Metallo-supramolecular architectures based on multifunctional N-donor ligands [Elektronische Ressource] / von Harold Brice Tanh Jeazet

-

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
241 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Metallo-supramolecular Architectures based on Multifunctional N-Donor Ligands DISSERTATION zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden von MSc. Harold Brice Tanh Jeazet geboren am 22.11.1979 in Bafoussam / Kamerun Eingereicht am: 23. 06. 2010 Die Dissertation wurde in der Zeit von Dezember 2006 bis Mai 2010 an der Professur Koordinationschemie der Fachrichtung Chemie und Lebensmittelchemie der TU Dresden sowie im Institut für Radiochemie des Forschungszentrums Dresden-Rossendorf angefertigt. To my daugther “Scio me nihil scire“ (I know that I know nothing) Sokrates (469 BC - 399 BC) Acknowledgements First I wish to thank my both supervisors Prof. Dr. Karsten Gloe, chair of Coordination Chemistry at TU Dresden, and Prof. Dr. Gert Bernhard, director of the Institute of Radiochemistry at Forschungszentrum Dresden-Rossendorf (FZD), for giving me the opportunity to carry out this research at their respective groups as well as for their constant supervision and guidance throughout my stay. They always had time for discussions during this work and supported me with their immense theoretical and practical knowledges.

Informations

Publié par
Publié le 01 janvier 2010
Nombre de lectures 27
Langue English
Poids de l'ouvrage 7 Mo

Extrait

Metallo-supramolecular Architectures based
on Multifunctional N-Donor Ligands
DISSERTATION
zur Erlangung des akademischen Grades
Doctor rerum naturalium
(Dr. rer. nat.)
vorgelegt
der Fakultät Mathematik und Naturwissenschaften
der Technischen Universität Dresden
von
MSc. Harold Brice Tanh Jeazet
geboren am 22.11.1979 in Bafoussam / Kamerun
Eingereicht am: 23. 06. 2010 Die Dissertation wurde in der Zeit von Dezember 2006 bis Mai 2010 an der Professur Koordinationschemie der Fachrichtung Chemie und Lebensmittelchemie der TU Dresden sowie im Institut für Radiochemie des Forschungszentrums Dresden-Rossendorf angefertigt.
To my daugther
“Scio me nihil scire“
(I know that I know nothing)
Sokrates
(469 BC - 399 BC)
Acknowledgements
First I wish to thank my both supervisors Prof. Dr. Karsten Gloe, chair of Coordination Chemistry at TU Dresden, and Prof. Dr. Gert Bernhard, director of the Institute of Radiochemistry at Forschungszentrum Dresden-Rossendorf (FZD), for giving me the opportunity to carry out this research at their respective groups as well as for their constant supervision and guidance throughout my stay. They always had time for discussions during this work and supported me with their immense theoretical and practical knowledges. Their extensive knowledges in many fields and their patience in helping me have not only driven me to complete my research projects, but also fueled my passion for pursuing future scientific endeavors in a variety of subjects.
I acknowledge the strong support given by Dr. Kerstin Gloe. Her constant guidance, valuable advice and encouragement help me a lot.
I am very grateful to several colleagues who provided technical support to this work. Dr. Gerhard Geipel supported me beside his tutor role with TRLFS measurements. His advices, comments and suggestions were crucial. I wish to thank Dr. Olga Kataeva and Mrs. Anne Jäger for their collaboration with crystal structure measurements and characterization. In particular, special thanks go to Dr. Thomas Doert for his very fruitful collaboration on X-ray structures. I also wish to thank Prof. Dr. Satoru Tsushima for DFT calculations, Dr. Harald Foerstendorf and Mrs. Inge Schubert for IR measurements. I thank Dr. Karim Fahmy, Dr. Olesya Savchuk and Stefanie Eichler for their cooperation in DNA-binding studies and valuable comments, Dr. Bernd Schwenzer and Anja Drose for experiments and discussions on cancer cells activity.
I thank Dr. Margret Acker, Mrs. Martina Kobus, Dr. Steffen Taut and Wolfgang Krause for the good working atmosphere as well as for their scientific support and organisational tasks in the radiochemical laboratory at the TU Dresden.
Furthermore, I would like to extent my thanks to the members of our group. Several of them acted as friends, advisors or assistants. Though numerous to mention all, I would like to single out Dr. Marco Wenzel whose presence was invaluable. Beside his great assistance at the beginning of my work he was involved in proof-reading of the first draft
of my thesis and he has very constructive comments. I express also my sincere gratitude to Axel Heine, Katja Schreppel, Jens Mizera and Linda Götzke for their fruitful cooperation. I enjoyed the good working climate and the fun during our seminars, coffeebreaks and Christmas lectures.
I sincerely thank Ejaz Ahmed for his friendship, his timely help, a fruitful discussion on X-ray crystallography and for reading of the first draft of this thesis.
I am grateful to all my colleagues who made and make me have good time in both research groups.
I am also grateful to Mrs Claudia Kirmes who make my stay at the FZD comfortable through easy and quick administrative treatment records.
I also take this opportunity to express my gratitude to Dr. Julien Makongo for the great support and encouragement. He have facilitated my integration in Germany and assisted me during my initial stages.
My heart-felt thanks go to my girl-friend Marie-laure Kapim, whose moral support, generosity, advice, patience, encouragement and permanent contact contributed emensely to the realisation of this work.
On a final note I wish to thank my parents my brothers and sisters for their never-ending love and support. All other friends and relatives are also acknowledged.
And most of all, I thank GOD.
Table of content
1Introduction and motivation of the studies ............................................................ 1
2 The bis-pyridylimine ligand approach.................................................................... 8
2.1 Synthesis and structure of bis-pyridylimine ligands............................................. 18
2.1.1
Ligand syntheses ................................................................................................... 18
2.1.2 Structure of selected ligands ................................................................................. 19 1 2.1.2.1 Structure of bis[4-(2-pyridylmethyleneimino)phenyl]methane (L) ............. 19
4 2.1.2.2 Structure of bis[4-(2-pyridylmethyleneimino)phenyl]amine (L21) ................. 5 2.1.2.3 Structure of bis[4-(2-pyridylmethyleneimino)phenyl]-1,1-cyclohexane(L) . 23
2.2 Synthesis and structure characterization of some transition metal complexes.. 25
2.2.1 Ag(I) complexes.................................................................................................... 26 1. 2.2.1.1 Complex {[AgL]ClO4CH3CN}n(1) ............................................................ 26 2. 2.2.1.2 Complex {[AgL]ClO4CH2Cl2}n(230) ............................................................. 2 2.2.1.3 Complex [Ag2(L)2](ClO4)2(3) ..................................................................... 34
2.2.2 Cu(II) complexes .................................................................................................. 38 1 2 2.2.2.1 Complex [CuL(SO4)]6· 24H2O (4), Complex [CuL(SO4)]6· 24H2O (5) and 3 Complex [CuL(SO4)]6· 24H2O (638) .............................................................. 2 3 2.2.2.2 Complex [Cu6(L)3(L)3(SO4)6] · 24H2O (7) ................................................. 45 2.2.2.3 Thermal analysis of the complexes4,5and6................................................ 48 1 2.2.2.4 Magnetic properties of the complex [CuL(SO4)]6· 24H2O (450) .................... 2.2.2.5 Laser fluorescence spectroscopy studies of complex formation of Cu(II) with 1 2 ligandsLandL............................................................................................ 52
2.2.3 Hg(II) complexes .................................................................................................. 55 2 2.2.3.1 Complex [Hg2(L)2(ClO4)3(H2O)2] ClO4· CH3CN (8) ................................... 55 1 3 2.2.3.2 Complexes [Hg2(L)2] (ClO4)4(9) and [Hg2(L)2] (ClO4)4(10)...................... 61
2.2.4
Mn(II), Fe(II) and Ni(II) complexes ..................................................................... 63
1 2.2.4.1 Complex [Mn2(L)3](ClO4)4(11) ................................................................... 63 2 2.2.4.2 Complex [Ni2(L)3](NO3)4· 2.5H2O (1267) ......................................................
5 5 2.2.4.3 Complex [Ni2(L)3](PF6)4· 0.9H2O (13) and [Fe2(L)3](PF6)4(14) .............. 71 5 2.3 DNA binding studies of complexes [Ni2(L )3](PF6)4(13) 5 and [Fe2(L )3](PF6)478(14) ........................................................................................... 2.3.1 Thermal stability in absence and presence of DNA.............................................. 78
2.3.2
2.3.3
2.3.4
3
UV-vis absorption spectroscopy study ................................................................. 79
Circular dichroism spectroscopy study ................................................................. 81
Reactivity with cancer cell lines ........................................................................... 83
The bis(2-hydroxyaryl) imine ligand approach ..................................................... 85
3.1 Ligand syntheses ....................................................................................................... 90
3.2 Characterization of U(VI) complexes...................................................................... 92 6 7 3.2.1 Complexes {[UO2(L)(NO3)2]}n(15) and {[UO2(L)(NO3)2]}n(1692) .................. 8 10 12 3.2.2 Complexes [UO2(L)(NO3)2] (17), [UO2(L)(NO3)2] (18), [UO2(L)(NO3)2] (19) 13 and [UO2(L)(NO3)2] (2098) .................................................................................. 3.2.3 DFT calculation of complex structures............................................................... 112
3+ 2+ 3.3 Liquid-liquid extraction studies of Eu and UO2with selected ligands......... 115 4 The tripodal imine and amine ligand approach................................................... 120
4.1 Ligand syntheses ..................................................................................................... 127 14 20 4.1.1 Synthesis of tripodal imine and amine ligands (L-L).................................... 127
4.1.2
21 23 Synthesis of di(2-picolyl)amine ligands (L-L).............................................. 128
4.2 Synthesis and characterization of U(VI), Nd(III),Eu(III) and Yb(III) complexes ............................................................................................ 129 21 22 4.2.1 U(VI) Complexes withL,L..........................................................................129
4.2.2
Nd(III), Eu(III) and Yb(III) complexes .............................................................. 130
4.3 Liquid-liquid extraction studies of Eu(III) and U(VI) with selected ligands .... 132
5
6
Conclusions .............................................................................................................. 140
Experimental ........................................................................................................... 145
6.1 Analytic methods..................................................................................................... 145
6.2 Chemicals................................................................................................................. 148
6.3 Synthesis................................................................................................................... 148
6.3.1
6.3.2
Ligand synthesis.................................................................................................. 148
Complex synthesis .............................................................................................. 171
6.4 DFT calculations ..................................................................................................... 191
6.5 Liquid-liquid extraction ......................................................................................... 191
6.6 X-ray single crystal analyses .................................................................................. 192
7 References ................................................................................................................ 194
8 List of abbreviations ............................................................................................... 207
9 Crystallographic data ............................................................................................. 208
10 Publications and conference contributions........................................................... 226
11 Erklärung................................................................................................................. 229
12 Versicherung ........................................................................................................... 229
13 Scheme of ligand structures ................................................................................... 230
1
Introduction and motivation of the studies
1
Supramolecular chemistry is a young discipline, which investigates (supra)molecular phenomena between the traditional fields of chemistry (organic, inorganic, and physical chemistry). As a matter of course it is strongly influenced by other sciences like biology biochemistry physics and material sciences.
Supramolecular chemistry is one of the actively pursued areas of research in chemistry. The concepts and the term of “supramolecular chemistry” were introduced in 1978 by Lehn [1] and it was defined in words, “just as there is a field of molecular chemistry based on the covalent bond, there is a field of supramolecular chemistry, the chemistry of molecular assemblies and of the intermolecular bond”. It is often defined as “the chemistry of the noncovalent bond” [2-4]. This means that not only an isolated molecule (either as a single species or as bulk material) but also the assembly of at least two molecules is studied [5-7]. Molecular recognition between the molecular building blocks is important to enable an effective aggregation by noncovalent interactions. The reversible self-assembly processes [8] leads to stable and well-defined supramolecular species. Aggregation of the components might result in new properties, which are expressed in a supramolecular function [4, 9]. By the use of this principle to construct large ensembles of molecules, supramolecular chemistry bridges the gap between the picometer dimensions of molecules and the nanoworld. Therefore, the understanding of its fundamental basics is crucial for a successful chemical “bottom–up” approach toward nanotechnology [10].
Essential biological processes, e.g., reproduction, signal transduction, biocatalysis, information storage, and processing, are all based on supramolecular interactions between molecular components. Enzymes, viruses, membranes, and many other complicated structures with biologically relevant functions are mainly built up by simple self-assembly processes [11, 12]. The processes can be mimicked in small artificial supramolecular derivatives. Recently, major chemistry research activities are devoted to the development of chemical tools for the self-assembly of structurally rich supramolecular arrays [13-17]. Several strategies, such as the mutual complementary
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents