Sujets de maths spé au bac S

Publié par

BACCALAURÉAT GÉNÉRAL SESSION2014 MATHÉMATIQUES SérieS ÉPREUVEDUJEUDI19JUIN2014 Duréedel’épreuve:4heures Coefficient:9 ENSEIGNEMENTDESPÉCIALITÉ Lescalculatrices électroniques depoche sontautorisées, conformément àlaréglementation envigueur. Le sujet est composé de 4 exercices indépendants. Le candidat doit traiter tous les exercices. Dans chaque exercice, le candidat peut admettre un résultat précédemment donné dans le texte pour aborder les questions suivantes, à condition de l’indiquer clairement sur la copie. Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu’il aura développée. Il est rappelé que la qualité de la rédaction, la clarté et la précision des raisonnements seront prises en compte dans l’appréciation des copies. Avant de composer, le candidat s’assurera que le sujet comporte bien 6 pages numérotées de 1/6 à 6/6. 14MASCSMLR1 page1/6 SPÉCIALITÉ b b EXERCICE1(5points) Communàtouslescandidats PartieA Dans le plan muni d’un repère orthonormé, on désigne parC la courbe représentative de la1 fonction f définiesurRpar:1 −xf (x)=x+e1 1. JustifierqueC passeparlepoint Adecoordonnées(0,1).1 2. Déterminerletableaudevariationdelafonction f .Onpréciseraleslimitesde f en+∞1 1 eten−∞. PartieB Z1¡ ¢ −nxL’objetdecettepartieestd’étudierlasuite(I )définiesurNpar:I = x+e dx.n n 0 ³ ´→− →− 1.
Publié le : jeudi 19 juin 2014
Lecture(s) : 4 509
Nombre de pages : 6
Voir plus Voir moins

BACCALAURÉAT GÉNÉRAL
SESSION2014
MATHÉMATIQUES
SérieS
ÉPREUVEDUJEUDI19JUIN2014
Duréedel’épreuve:4heures Coefficient:9
ENSEIGNEMENTDESPÉCIALITÉ
Lescalculatrices électroniques depoche sontautorisées,
conformément àlaréglementation envigueur.
Le sujet est composé de 4 exercices indépendants. Le candidat doit traiter tous les exercices.
Dans chaque exercice, le candidat peut admettre un résultat précédemment donné dans le texte pour
aborder les questions suivantes, à condition de l’indiquer clairement sur la copie.
Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non
fructueuse, qu’il aura développée.
Il est rappelé que la qualité de la rédaction, la clarté et la précision des raisonnements seront prises
en compte dans l’appréciation des copies.
Avant de composer, le candidat s’assurera que le sujet comporte bien 6 pages
numérotées de 1/6 à 6/6.
14MASCSMLR1 page1/6
SPÉCIALITÉEXERCICE1(5points)
Communàtouslescandidats
PartieA
Dans le plan muni d’un repère orthonormé, on désigne parC la courbe représentative de la1
fonction f définiesurRpar:1
−xf (x)=x+e1
1. JustifierqueC passeparlepoint Adecoordonnées(0,1).1
2. Déterminerletableaudevariationdelafonction f .Onpréciseraleslimitesde f en+∞1 1
eten−∞.
PartieB
Z1¡ ¢
−nxL’objetdecettepartieestd’étudierlasuite(I )définiesurNpar:I = x+e dx.n n
0
³ ´→− →−
1. Dansleplanmunid’unrepèreorthonormé O ; ı ,  ,pourtoutentiernatureln,onnote
−nxC lacourbereprésentativedelafonction f définiesurRpar f (x)=x+e .n n n
Surlegraphiqueci-dessousonatracélacourbeC pourplusieursvaleursdel’entiern etn
ladroiteD d’équationx=1.
C1
CA 2
C3
C4
~ C6 D
C15
C60
O ~ı
a. Interprétergéométriquementl’intégraleI .n
b. Enutilisantcetteinterprétation,formuleruneconjecturesurlesensdevariationde
lasuite(I )etsalimiteéventuelle.Onpréciseralesélémentssurlesquelsons’appuien
pourconjecturer.
14MASCSMLR1 page2/6
bb2. Démontrerquepourtoutentiernatureln supérieurouégalà1,
Z1 ¡ ¢−(n+1)x xI −I = e 1−e dx.n+1 n
0
EndéduirelesignedeI −I puisdémontrerquelasuite(I )estconvergente.n+1 n n
3. Déterminerl’expressiondeI enfonctionden etdéterminerlalimitedelasuite(I ).n n
EXERCICE2(5points)
Communàtouslescandidats
LespartiesAetBpeuventêtretraitéesindépendamment.
PartieA
Unlaboratoirepharmaceutiqueproposedestestsdedépistagedediversesmaladies.Sonservice
decommunicationmetenavantlescaractéristiquessuivantes:
– laprobabilitéqu’unepersonnemaladeprésenteuntestpositifest0,99;
– laprobabilitéqu’unepersonnesaineprésenteuntestpositifest0,001.
1. Pourunemaladiequivientd’apparaître,lelaboratoireélaboreunnouveautest.Uneétude
statistiquepermetd’estimerquele pourcentagedepersonnesmaladesparmila popula-
tiond’unemétropoleestégalà0,1%.Onchoisitauhasardunepersonnedanscettepopu-
lationetonluifaitsubirletest.
On note M l’évènement « la personne choisie est malade » et T l’évènement « le test est
positif».
a. Traduirel’énoncésouslaformed’unarbrepondéré.
−3b. DémontrerquelaprobabilitéP(T)del’évènementT estégaleà1,989×10 .
c. L’affirmationsuivanteest-ellevraieoufausse?Justifierlaréponse.
Affirmation:«Siletestestpositif,ilyamoinsd’unechancesurdeuxquelapersonne
soitmalade».
2. Le laboratoire décide de commercialiser un test dès lors que la probabilité qu’une per-
sonnetestéepositivementsoitmaladeestsupérieureouégaleà0,95.Ondésigneparx la
proportiondepersonnesatteintesd’unecertainemaladiedanslapopulation.
Àpartirdequellevaleurdex lelaboratoirecommercialise-t-illetestcorrespondant?
14MASCSMLR1 page3/6PartieB
La chaine de production du laboratoire fabrique, en très grande quantité, le comprimé d’un
médicament.
1. Uncompriméestconformesisamasseestcompriseentre890et920mg.Onadmetquela
masseen milligrammesd’un compriméprisau hasarddanslaproductionpeutêtremo-
2déliséeparunevariablealéatoireX qui suitlaloinormaleN (µ,σ )demoyenneµ=900
etd’écart-typeσ=7.
a. Calculerlaprobabilitéqu’uncompriméprélevéauhasardsoitconforme.Onarron-
−2diraà10 .
−3b. Déterminerl’entierpositifh telqueP(900−h6X6900+h)≈0,99à10 près.
2. La chaine de production a été réglée dans le but d’obtenir au moins 97% de comprimés
conformes. Afin d’évaluer l’efficacité des réglages, on effectue un contrôle en prélevant
unéchantillonde1000comprimésdanslaproduction.Latailledelaproductionestsup-
posée suffisamment grande pour que ce prélèvement puisse être assimilé à 1000 tirages
successifsavecremise.
Le contrôle effectué a permis de dénombrer 53 comprimés non conformes sur l’échan-
tillonprélevé.
Cecontrôleremet-ilenquestionlesréglagesfaitsparlelaboratoire?Onpourrautiliserun
intervalledefluctuationasymptotiqueauseuilde95%.
EXERCICE3(5points)
Communàtouslescandidats
4 2Ondésignepar(E)l’équationz +4z +16=0d’inconnuecomplexez.
21. RésoudredansCl’équationZ +4Z+16=0.
Écrirelessolutionsdecetteéquationsousuneformeexponentielle.
2. Ondésignepara lenombrecomplexedontlemoduleestégalà2etdontunargumentest
π
égalà .
3
2Calculera sousformealgébrique. p
2EndéduirelessolutionsdansCdel’équationz =−2+2i 3.Onécriralessolutionssous
formealgébrique.
3. Restitutionorganiséedeconnaissances
Onsupposeconnulefaitquepourtoutnombrecomplexez=x+iy oùx∈Ret y∈R,le
conjuguédez estlenombrecomplexez définiparz=x−iy.
Démontrerque:
– Pourtousnombrescomplexesz etz , z z =z z .1 2 1 2 1 2 ¡ ¢nn– Pourtoutnombrecomplexez ettoutentiernaturelnonnuln, z = z .
14MASCSMLR1 page4/64. Démontrerquesiz estunesolutiondel’équation(E)alorssonconjuguéz estégalement
unesolutionde(E).
En déduire les solutions dans C de l’équation (E). On admettra que (E) admet au plus
quatresolutions.
EXERCICE4(5points)
Candidatsayantsuivil’enseignementdespécialité
Un pisciculteurdisposededeux bassinsA et Bpourl’élevage deses poissons.Touslesansà la
mêmepériode:
– ilvidelebassinBetvendtouslespoissonsqu’ilcontenaitettransfèretouslespoissons
dubassinAdanslebassinB;
– laventedechaquepoissonpermetl’achatdedeuxpetitspoissonsdestinésaubassinA.
Parailleurs,lepisciculteurachèteenplus200poissonspourlebassinAet100poissons
pourlebassinB.
Pourtoutentiernaturelsupérieurouégalà1,onnoterespectivementa etb leseffectifsn n
depoissonsdesbassinsAetBauboutden années.Endébutdepremièreannée,lenombrede
poissonsdubassinAesta =200etceluidubassinBestb =100.0 0
1. Justifierquea =400etb =300puiscalculera etb .1 1 2 2
µ ¶ µ ¶
0 2 200
2. OndésigneparAetB lesmatricestellesqueA= etB= etpourtoutentier
1 0 100
µ ¶
an
natureln,onposeX = .n bn
a. Expliquerpourquoipourtoutentiernatureln, X =AX +B.n+1 n
µ ¶ µ ¶
x x
b. Déterminerlesréelsx ety telsque =A +B.
y y
µ ¶
a +400n
c. Pourtoutentiernatureln,onposeY = .n b +300n
Démontrerquepourtoutentiernatureln,Y =AY .n+1 n
3. Pourtoutentiernatureln,onposeZ =Y .n 2n
2a. Démontrer que pour tout entier naturel n, Z = A Z . En déduire que pour toutn+1 n
entiernatureln,Z =2Z .n+1 n
b. Onadmetquecetterelationderécurrencepermetdeconclurequepourtoutentier
natureln,
nY =2 Y .2n 0
nEndéduirequeY =2 Y puisdémontrerquepourtoutentiernatureln,2n+1 1
n na =600×2 −400 et a =800×2 −400.2n 2n+1
14MASCSMLR1 page5/64. LebassinAaunecapacitélimitéeà10000poissons.
a. Ondonnel’algorithmesuivant.
Variables: a,p etn sontdesentiersnaturels.
Initialisation: Demanderàl’utilisateurlavaleurdep.
Traitement: Sip estpair
p
Affecteràn lavaleur
2
nAffecteràa lavaleur600×2 −400.
Sinon
p−1
Affecteràn lavaleur
2
nAffecteràa lavaleur800×2 −400.
FindeSi.
Sortie: Affichera.
Quefaitcetalgorithme?Justifierlaréponse.
b. Écrire un algorithmequi affiche lenombred’années pendantlesquelleslepiscicul-
teurpourrautiliserlebassinA.
14MASCSMLR1 page6/6

Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.