PCSI Mathematiques Lycee Brizeux annee
5 pages
Français

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

PCSI Mathematiques Lycee Brizeux annee

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
5 pages
Français
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Niveau: Secondaire, Lycée, Terminale
PCSI Mathematiques Lycee Brizeux - annee 2009-2010 C o r r e c t i o n d u P r e m i e r D e v o i r S u r v e i l l e P r o b l e m e s d ' a n a l y s e d e T e r m i n a l e Exercice 1 Calculer les limites suivantes : lim x?0 ln(1? ex) x et lim x?+∞ √ ex + x? e x 2 . Exercice 2. Une suite de solutions d'equations Soit n ? N?, on note Pn la fonction polynomiale definie sur R par Pn(x) = xn + x? 1. 1. Montrer que l'equation Pn(x) = 0 admet une unique solution dans l'intervalle ]0, 1[. On note ?n cette solution. Le but de l'exercice est d'etudier la suite (?n)n?N. 2. Pour tout n ? N?, etablir que Pn+1 < Pn sur ]0, 1[. 3. Montrer que pour tout n ? N, Pn+1(?n) < 0. En deduire que la suite (?n)n?N est strictement croissante. 4. Montrer que la suite (?n)n?N est convergente. On note la limite de la suite (?n)n?N.

  • c?

  • elevant en elevant

  • f?

  • unique solution

  • equation pn

  • deduire

  • deduire entre les courbes c?


Sujets

Informations

Publié par
Nombre de lectures 16
Langue Français

Extrait

PCSI
Math´ematiques
Lyce´eBrizeux-ann´ee2009-2010
CorrectionduPremierDevoirSurveill´e
P r o b l e` m e sd ’ a n a l y s ed eT e r m i n a l e
Calculer les limites suivantes :
Exercice 1
x x ln(1e) x2 lim etlime+xe . x0x+x
Exercice2.Unesuitedesolutionsde´quations
n SoitnN,on notePnrminoedaln´esuielypoontincfolaRparPn(x) =x+x1. 1.Montrerquele´quationPn(x) = 0 admet une unique solution dans l’intervalle ]0,1[. On noteαntu´eerdieeicdstelecrexeL.ndtubectttuoiseloalusti(eαn)nN. 2. PourtoutnN,´eeuqrilbatPn+1< Pnsur ]0,1[. 3. Montrerque pour toutnN, Pn+1(αn)<0.Ernedq´ueduiuiteelas(αn)nNest strictement croissante. 4. Montrerque la suite (αn)nNest convergente. On note`la limite de la suite (αn)nN. n n 5. Etablirque pour toutnN,0α` . n 6. Onsuppose que` <1. n (a)Etablirquesouscettehypothe`selimα= 0. n n+(b)Ende´duirequeforce´ment`= 1. 7.End´eduirelavaleurde`.
0n1 1.Pn´dtseelbaviresurRen tant que fonction polynomiale. Pour toutxR, Pn(x) =n x+ 1.eriv´eede´daLPn est donc strictement positive sur[0,1].aP,ntueeqs´onrcPnest une bijection (strictement croissante) de[0,1]sur [Pn(0), Pn(1)].OrPn(0) =1etPn(1) = 1.tionL´equaPn(x) = 0a donc une unique solution dans]0,1[. 2.Onpeutobtenirline´galite´en´etudiantlafonctionPn+1Pn.seiuavtn.enOepalegr´niteoblutre`inamaledtneme n+1n n+1n Pour toutx]0,1[< x., xDu`ox+x1< x+x1pour toutx]0,1[. 3.Appliquonslin´egalit´epre´ce´dentepourx=αn. On obtientPn+1(αn+1)< Pn(αn).Orαnevire´Pn(αn) = 0(car αna`tnaenrtpaapontilusolnuqieueinitnoestpard´]0,1[dePn(x) = 0`u.Do)Pn+1(αn)<0. SoitnN. Pn+1est strictement croissante etPn+1(αn)<0;Pn+1(αn+1) = 0.Ceci entraˆıneαn< αn+1. Parcons´equent,αn< αn+1pour toutnN.blit´etaasuitqeueleCic(αn)est strictement croissante. nN 4. Lasuite(αn)emetcirtstseante,majntcroissroe´pera1: elle est donc convergente. nN 5. Onsait que pour toutnN, 0αn`. Dou`en´elevantene´levanta`lapuissancen: n n 0αn` pour toutnN.
1
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents