7 jours d'essai offerts
Cet ouvrage et des milliers d'autres sont disponibles en abonnement pour 8,99€/mois
2007-2008
T.P.El3 O S C IL L A TE UR SS I NUS OÏDA UX
1.CONDITION DOSCILLATION Nous avons étudié dans un précédent TP la réponse Vs(t) dun montage électronique à un signal Ve(t), lorsque Vsobéissait à une équation différentielle du type : 2 d VdV SS A +B +CVS= f(Ve) 2 dtdt Examinons à présent le cas particulier Ve0 ( pas de source ) et B = 0 : léquation différentielle = devient: : 2 d VS A +CVS= 0 2 dt A 2 Nous trouvons alors un oscillateur sinusoïdal de pulsationω0= . C Revenons à la notation complexe associée à la possibilité dobtention dun régime linéaire. Le dénominateur, dans le cas dun second ordre, sécrit : 2 D(jω) = C + jωB + (jω) A Avec B = 0, le régime doscillations sinusoïdales correspond à lannulation du dénominateur D(jω). Le montage présente alors un gain infini : en pratique ceci signifie quavec une entrée nulle ( Ve= 0), il est possible dobtenir une sortie non nulle. Lannulation du dénominateur, complexe, implique lannulation des parties réelle et imaginaire. Elle débouche en général sur des conditions portant sur les composants du montage et la pulsationω: souvent, il existe une pulsation et une seuleω0pour laquelle le dénominateur sannule. On obtient alors en sortie, avec une entrée nulle, une grandeur sinusoïdale, de pulsationω0 :on a ainsi fabriqué un oscillateur sinusoïdal électronique. 2 Pour le système du second ordre, la double condition doscillation sécrit : B = 0et A- Cω= 0 A 2 On retrouve bien unoscillateur de pulsationω0= . C La condition B = 0 nest cependant jamais parfaitement réalisée : - unevaleur de B positive ramène nécessairement Vs àzéro : le système eststable.En pratique on nobserve pas doscillations. - une valeur de B négative fait diverger le systèmeinstable: on a des oscillations sinusoïdales qui samplifient jusquà saturation dune tension de sortie dAO. Très souvent sinstalle alors un nouveau régime qui fait reconverger le système (oscillations décroissantes) et ainsi de suite : on obtient alors unoscillateur quasi-sinusoïdalsi les croissances et décroissances sont limitées.