7 jours d'essai offerts
Ce livre et des milliers d'autres sont disponibles en abonnement pour 8,99€/mois

Tres Fabulitas
for bassoon and piano
for Nicole Raimo j.hallman
and Stephen Gallagher ©2006 I. Lullaby q = 120            Bassoon 
                                             
pp; gingerly
Piano (like a distant woodwind section)
                                                                                          
 10                         
pp; bel canto and expressive softer;
like an echo                                                            
                                                                               
    20                        
    
                                                                                                                                    
                                
29               
                                          
                                                                           

2
37                 
ppp               
                                  
II. q.
 = 52
48                     
mp                                                                                                         
                     
p
53                              
                                                                                                  
                    
58                                            
                               
                   3
64                                     
f                                    
mf like a brass section                                    
     68                                                
                             
                                
 72                                           
                            
                                 
76                                                          
                     
                     4
79                                                                                                  
              
                                
82                                                                                                 
                   
                                                             
    85                                                                                   
ff                   
                   
     88                                                          

          5
            90                                                                      

                                              
III. March q = 132
95                              f
3 33                                                                                                                                            
66 6
105           
3 3 3                                                           3        3  3                                      
6 6   6
114                                           
3
                                                                                                                                                                   

6
   123                      
3
3                                                                                                
131                             
   3                                                  
3
                                  
140                                                                                                                                                                                      
148                     
f 3                                                                                                                     6
157              3 3 33                                                        3       3  3                              6 6 6  67
 165                                  
3                                                           6
  170                                                                                                                                              
     173                                                                                           
                                      
 176                       f     3                                                                                      8
182                  
3 3 3 3 3 333 33                                                                                                                                        
189                       
3
33 33 3 3 3 3 3 3                                                                 
3 3 3 3                                               
196                                             
                                                 
3 3
3 3 3 3                                                               3 3 3 3 3 33 3 3
      203                                                              
                                  
3  3                                                          
3 3 3 3 3 3 33 33 39
         209                             
                                                                                                                                                    
3 3 3 3 3 3 3 3 3 3
                 214                             
3 3                                                                                                                               
3 3                                                                                                                                            
     220                                                                                  
                                                                              