Methyltransferases from Ruta graveolens L. [Elektronische Ressource] : molecular biology and biochemistry / vorgelegt von Laura Nicoleta Burga
143 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Methyltransferases from Ruta graveolens L. [Elektronische Ressource] : molecular biology and biochemistry / vorgelegt von Laura Nicoleta Burga

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
143 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Methyltransferases from Ruta graveolens L.:Molecular Biology and BiochemistryDissertationzurErlangung des Doktorgradesder Naturwissenschaften(Dr. rer. nat.)demFachbereich Pharmazieder Philipps-Universität Marburgvorgelegt vonLaura Nicoleta BurgaausFagaras, RumänienMarburg/Lahn 2005Vom Fachbereich Pharmazieder Philipps-Universität Marburgals Dissertation angenomen am: 13. 07. 2005Erstgutachter: Prof. Dr. Ulrich MaternZweitgutachter: Prof. Dr. Maike PetersenTag der mündlische Prüfung am: 12. 07. 2005PublicationLaura Burga, Frank Wellmann, Richard Lukacin, Simone Witte, Wilfried Schwab,Joachim Schröder and Ulrich Matern (2005) Unusual pseudosubstrate specificity of anovel 3,5-dimethoxyphenol O-methyltransferase cloned from Ruta graveolens L.Arch Biochem Biophys 2005 Aug 1; 440(1):54-64._____________________________________________________________________ Table of contents ___Table of contents iAbreviations vi1. INTRODUCTION1.1 Ruta graveolens L. 11.1.1 General features 11.1.2 Content 21.2 Acridone alkaloids 31.2.1 Biosynthesis of acridone alkaloids 41.2.2 Anthranilate synthase 51.2.3 Anthranilate N-methyltransferase 61.2.4 N-methylanthranilate:CoA-ligase 61.2.5 Acridone synthase 71.2.6 Rutacridone and furacridone 71.3 Methyltransferases 81.3.1 Plant methyltransferases 81.3.2 Conserved motifs 151.3.3 Active site 161.3.4 Importance of methyltransferases in humans 191.4 Plant volatile compounds 231.4.

Sujets

Informations

Publié par
Publié le 01 janvier 2006
Nombre de lectures 53
Langue English
Poids de l'ouvrage 7 Mo

Extrait

Methyltransferases from Ruta graveolens L.:
Molecular Biology and Biochemistry
Dissertation
zur
Erlangung des Doktorgrades
der Naturwissenschaften
(Dr. rer. nat.)
dem
Fachbereich Pharmazie
der Philipps-Universität Marburg
vorgelegt von
Laura Nicoleta Burga
aus
Fagaras, Rumänien
Marburg/Lahn 2005Vom Fachbereich Pharmazie
der Philipps-Universität Marburg
als Dissertation angenomen am: 13. 07. 2005
Erstgutachter: Prof. Dr. Ulrich Matern
Zweitgutachter: Prof. Dr. Maike Petersen
Tag der mündlische Prüfung am: 12. 07. 2005Publication
Laura Burga, Frank Wellmann, Richard Lukacin, Simone Witte, Wilfried Schwab,
Joachim Schröder and Ulrich Matern (2005) Unusual pseudosubstrate specificity of a
novel 3,5-dimethoxyphenol O-methyltransferase cloned from Ruta graveolens L.
Arch Biochem Biophys 2005 Aug 1; 440(1):54-64._____________________________________________________________________ Table of contents ___
Table of contents i
Abreviations vi
1. INTRODUCTION
1.1 Ruta graveolens L. 1
1.1.1 General features 1
1.1.2 Content 2
1.2 Acridone alkaloids 3
1.2.1 Biosynthesis of acridone alkaloids 4
1.2.2 Anthranilate synthase 5
1.2.3 Anthranilate N-methyltransferase 6
1.2.4 N-methylanthranilate:CoA-ligase 6
1.2.5 Acridone synthase 7
1.2.6 Rutacridone and furacridone 7
1.3 Methyltransferases 8
1.3.1 Plant methyltransferases 8
1.3.2 Conserved motifs 15
1.3.3 Active site 16
1.3.4 Importance of methyltransferases in humans 19
1.4 Plant volatile compounds 23
1.4.1 Methyltransferases involved in methylation of volatile compounds 24
1.4.2 Volatile compounds in Ruta graveolens L. 26
1.5 Aims of this work 28
2. MATERIALS AND METHODS
2.1 Chemicals 29
2.2 Radiochemicals 30
2.3 Substrates 30
2.4 Enzymes 34
2.5 Kits 34
i_____________________________________________________________________ Table of contents ___
2.6 Bacterial strains 35
2.7 Vectors 36
2.8 Buffers and solutions 37
2.9 Media 41
2.10 Thin layer chromatography 43
2.11 Equipment 43
2.12 Plant material preparation 44
2.12.1 Suspension culture 44
2.12.2 Elicitation 44
2.12.3 Harvesting and storage 44
2.12.4 Plant material 44
2.13 Crude extract preparation 44
2.13.1 Plant crude extract 44
2.13.2 Bacterial crude extract 45
2.14 Molecular biology methods 45
2.14.1 Total RNA isolation 45
2.14.2 Reverse transcription 45
2.14.3 Polymerase chain reaction 46
2.14.4 RACE 47
2.14.5 Plasmid DNA isolation 48
2.14.6 DNA sequence analysis 49
2.14.7 Northern blotting 49
2.14.8 Mutagenesis 50
2.14.9 Heterologous expression 50
2.14.10 Cloning into the expression vector pQE-60 51
2.14.11 Cloning into the expression vector pET101/D-TOPO 51
2.14.12 Transformation of M15[pREP4] expression cells 52
2.14.13 Transformation of BL21 Star expression cells 52
2.14.14 Induction of expression cells 52
2.15 Biochemical methods 52
ii_____________________________________________________________________ Table of contents ___
2.15.1 Protein determination 52
2.15.2 SDS-PAGE 52
2.15.3 Silver staining 53
2.15.4 Anthranilate N-methyltransferase assay 54
2.15.5 Purification of anthranilate NMT 54
2.15.6 Enzyme assay to determine the substrate specificity 56
2.15.7 Purification of 3,5-dimethoxyphenol OMT 56
2.15.8 Standard O-methyltransferase (OMT) assay 57
2.15.9 Characterisation of 3,5-dimethoxyphenol OMT 58
2.15.10 Thiol methyltransferase (TMT) assay 59
2.16 Other methods 60
2.16.1 Mass spectrometry 60
2.16.2 Radioactivity measurements 60
2.16.3 Protein microsequencing 60
3. RESULTS
3.1 Purification of SAM:anthranilate N-methyltransferase 61
3.1.1 Ammonium sulfate precipitation 61
3.1.2 Hydrophobic interaction chromatography 62
3.1.3 Size exclusion chromatography 63
3.1.4 Anion exchange chromatography 64
3.1.5 Affinity chromatography 65
3.1.6 Mono Q 66
3.1.7 Protein microsequencing 68
3.1.8 Partial microsequencing and oligonucleotide primers 69
3.2 OMT cloning by PCR amplification 71
3.2.1 OMT specific oligonucleotide primers 71
3.2.2 Generation of full size R-23 cDNA 72
3.2.3 Sequence analysis of R-23 cDNA 73
3.2.4 Heterologous expression 75
iii_____________________________________________________________________ Table of contents ___
3.2.5 Functional identification 76
3.2.6 Generation of full size R-27 cDNA 77
3.2.7 Sequence analysis of R-27 cDNA 78
3.2.8 Heterologous expression 80
3.2.9 Functional identification 80
3.2.10 O-methyltransferase reaction product identification 83
3.2.11 Comparition of R-27 polypeptide with annotated plant OMT sequences 84
3.2.12 Purification of recombinant 3,5-dimethoxyphenol OMT 86
3.2.13 Molecular weight of the native protein 88
3.2.14 Catalytic parameters 89
3.2.15 Thiol methyltransferase activity (TMT) 96
3.2.16 Thiol methyltransferase product identification 97
3.2.17 Substrate specificity 98
3.2.18 Biochemical characterisation for TMT activity 99
3.2.19 Competition of OMT and TMT activities 100
3.2.20 Tissue distribution of OMT and TMT activities 101
3.2.21 Northern blot analysis 104
4. DISCUSSION
4.1 Acridone alkaloids 105
4.1.1 Purification of anthranilate N-methyltransferase from Ruta graveolens L. 105
4.1.2 Partial sequence of the purified polypeptide 107
4.2 PCR amplification of methyltransferase-specific cDNA 109
4.2.1 The choice of degenerated primers 109
4.2.2 Cloning of Ruta methyltransferases 110
4.2.3 Sequence analysis of clone R-23 110
4.2.5 Sequence analysis of clone R-27 113
4.2.6 Functional expression and substrate specificity of clones … . 116
R-23 and R-27
4.2.7 Biochemical characterization of 3,5-dimethoxyphenol OMT 116
iv_____________________________________________________________________ Table of contents ___
4.2.8 The effect of thiols and thiol methyltransferase activity 118
2+4.2.9 The role of Zn 119
4.3 Conclusions and future prospects 120
5. REFERENCES 122
6. ZUSAMMENFASSUNG 130
v__________________________________________________________________________________________
ABREVIATIONS
AdoHcy S-adenosyl-L-homocysteine (SAH)
amp ampicillin
AP anchor primer
AS anthranilate synthase
ATP adenosine-5´-triphosphate
bp base pares
BSA bovine serum albumine
CCoAOMT caffeoyl-CoA O-methyltransferase
cDNA complementary DNA
CM chorismate mutase
CoA Coenzyme A
COMT caffeic acid O-methyltransferase
CTP cytidine-5´-triphosphate
Da dalton
dCTP desoxy-cytidintriphosphate
DEAE diethylaminoethyl
DMA 1,3-dihydroxy-N-methylacridone
DMAPP dimethylallyldiphosphate
DMS dimethylsulfide
DMSO dimethylsulfoxide
DMSP 3-dimethylsulfoniopropionate
DNA desoxyribonucleic acid
dNTP desoxy-nucleoside triphosphate
dpm desintegration per minute
DTT 1,4-dithiothreitol
DXMT 3,7-dimethylxanthine methyltransferase (caffeine synthase)
E. coli Escherichia coli
EDTA ethylene diamine tetraacetic acid
g gram
GAMT guanidinoacetate N-methyltransferase
GC-MS gas chromatography-mass specrometry
GNMT glycine N-methyltransferase
GSP gene specific primer
h hour(s)
HBMT betaine homocysteine S-methyltransferase
HIC hydrophobic interaction chromatography
HMT homocysteine S-methyltransferase
HNMT histamine N
IOMT isoflavone O
IPTG isopropyl-ß-D-thiogalactoside
kan kanamycin
kat katal
kDa kilodalton
Ki inhibition constant
Km Michaelis-Menten constant
l liter
LC-MS liquid chromatography-mass spectrometry
vi__________________________________________________________________________________________
LSC liquid scintillation counting
M molar
MCS multiple cloning site
min minute(s)
MMT methionine S-methyltransferase
MOPS 3-(N-morpholino) propane sulfuric acid
Mr relative molecular mass
mRNA messenger ribonucleic acid
MXMT 7-methylxanthine methyltransferases
NADPH nicotinamide adenine dinucleotide phosphate, reduced
nm nanometer
NMT N-methyltransferase
OD optical density at 600 nm600
OMT O
OOMT orcinol O-methyltransferase
ORF open reading frame
PAGE polyacrylamide gel electrophoresis
PAL phenylalanine ammonia-lyase
PCR polymerase chain reaction
PEG polyethylenglycol
PEMT phosphatidyl ethanolamine N-methyltransferase
Pmg Phytophthora megasperma f. sp. glycinea (P. sojae)
RACE rapid amplification of cDNA ends
Rf retention factor
RLM-RACE RNA ligase-mediated rapid amplification of cDNA ends
RNA ribonucleic acid
rpm rounds per minute
RT room temperature
SAH S-Adenosyl-L-homocysteine (SAH)
SAM S-Adenosyl-L-methionine (SAM)
SAMT salicylic acid carboxyl methyltransferase
SDS sodium dodecylsulfate
SEC size exclusion chromatography
SMM S-methylmetionine
ssp. subspecies
TLC thin layer chromatography
TMB 1,3,5-trimethoxybenzene
TPMT thiopurine methyltranferase
Tween 20 polyoxyethylene 20-sorbitane monolaurate
UTR untranslated region
UV ultraviolet
v/v volume per volume
Vmax maximum velocity of the reaction
w/v weight per volume
X-gal 5-bromo 4-chloro 3-indolyl ß-D-galactopyranoside
XMT xanthosine methyltransferase
v

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents