Micro- and nanostructured polymer grafts [Elektronische Ressource] / Marin Steenackers
183 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Micro- and nanostructured polymer grafts [Elektronische Ressource] / Marin Steenackers

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
183 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Informations

Publié par
Publié le 01 janvier 2007
Nombre de lectures 42
Langue English
Poids de l'ouvrage 7 Mo

Extrait

TECHNISCHE UNIVERSITÄT MÜNCHEN

Wacker-Lehrstuhl für Makromolekulare Chemie



Micro- and Nanostructured Polymer Grafts

Marin Steenackers

Vollständiger Abdruck der von der Fakultät für Chemie der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.


Vorsitzender: Univ.-Prof. Dr. K. Köhler

Prüfer der Dissertation: 1. Priv.-Doz. Dr. R. Jordan
2. Univ.-Prof. Dr. S. Weinkauf
3. Univ.-Prof. Dr. M. Stutzmann


Die Dissertation wurde am 25.06.2007 bei der Technischen Universität
München eingereicht und durch die Fakultät für Chemie am 27.07.2007
angenommen. Acknowledgments

First of all, I wish to express my very special thanks to PD Dr. Rainer Jordan for his
excellent supervision and the possibility he offered me to work on this very exciting topic. I
also want to thank him for the freedom he gave me during this work, his helpful advices and
for the unforgettable conferences in Flic en Flac, San Francisco and Budapest.
I would also like to thank Professor Oskar Nuyken and Professor Bernhard Rieger for giving
me the opportunity to work at the Wacker Lehrstuhl für Makromolekulare Chemie. I thank
Dr. Heidi Samarian and Dr. Carsten Troll for the work done behind the stage.
My thanks also go to Professor Sevil Weinkauf, Professor Martin Stutzmann and Professor
Klaus Köhler for accepting to be part of my jury and for examining this work.
I offer my warmest thanks to Dr. Alexander Küller and Professor Michael Grunze from the
Universität Heidelberg, Simon Lud and Dr. José Antonio Garrido from the Walter Schottky
Institut and Dr. Rüdiger Berger from the Max-Planck-Institut in Mainz for the exceptional
collaborations and all the fruitful discussions.
I’m also very grateful to Gerhard Richter for his kind help with the German parts of this
dissertation and to Carola Gantner for the magnificent layout.
My thanks also go to the interns Francis Adigbli, Carlos ‘de Tenerife’, Pierre Göppert,
Naïma Hutter and Spyridon Korres for their excellent participation in the different projects.
I take a particular pleasure in thanking Robert Luxenhofer (the Marindeutsch-Deutsch
translator) and Karin Lüdtke for the wonderful time in Flic en Flac. A big thank also to my lab
colleges Barbara Gall, Stephan Huber, Gerhard Richter and Max Erhard for the wonderful
work atmosphere.
I also want to thank all the other MAKROS, Timo Anselment, Dr. Erwin Bacher, Annette
Bauer, Dr. Martin Bortenschlager, Helga Brebeck, Dr. Sonia Cesana, Andreas Feigl,
Annalisa Giró, Dr. Andreas Junger, Dr. Steffen Jungermann, Dr. Daniel Käsmayr, Dr. Doris
Kaufmann, Monika Kellner, Dr. Tomaž Koz, Dr. Martin Mayershofer, Julia Müller, Michael
Reif, Dr. Benjamin Roßbach, Udo Schmidt, Martin Schneider, Dr. Jurgen Smeenk, Dr. Ralf
Weberskirch, Dr. Alexander Wörndle, Ulrike Will, Ning Zhang and all the freshly arrived MAKROS for their constant helpfulness and for the outstanding atmosphere in Garching,
Thurnau, Sudelfeld and Freiburg.
Finally, I would like to thank my family, my friends and especially Isabelle for their great
support and much more… Abbreviations and acronyms

AA acrylic acid
AB 4’-amino-1,1’-biphenyl
AFM atomic force microscopy
AIBN N,N-azobisisobutyronitril
ATR-FTIR attenuated total reflectance Fourier transform infrared
ATRP atom transfer radical polymerization
BDE bond dissociation energy
BP benzophenone
BT 4-mercapto-1,1’-biphenyl
cABT crosslinked 4’-amino-1,1’-biphenyl-4-thiol
cBT crosslinked BT
cHBT HBT
cMBT crosslinked MBT
CVD chemical vapor deposition
DCM dichloromethane
DP degree of polymerization
DPN dip pen nanolithography
DRIFT diffusion reflectance Fourier transformed infrared
EBCD electron beam induced carbon deposition
EBCDs electron beam induced carbon deposits
EBCL electron beam chemical lithography
Eq. equation
ETFE ethylene-co-tetrafluoroethylene
EUV extreme ultraviolet
eV electron volt
Fig. figure
GA glycidyl acrylate
GC gas chromatography
GPC gel permeations chromatography
HBT hydroxy-1,1’-biphenyl-4-thiol
HEA 2-hydroxyethyl acrylate HEMA 2-hydroxyethyl methacrylate
IR infrared
MAA methacrylic acid
MBT 4’-methyl-1,1’-biphenyl-4-thiol
mC micro Coulomb
MEMS microelectromechanical systems
NBD 4-nitrobiphenyldiazonium tetrafluoroborate
NBT 4’-nitro-1,1’-biphenyl-4-thiol
NCD nanocrystalline diamond
NHPI N-(hydroxymethyl)phthalimide
NMP nitroxide-mediated polymerization
NMR nuclear magnetic resonance
P2VP poly(2-vinylpyridine)
P4VP poly(4-vinylpyridine)
PAMS poly((4-aminomethyl)styrene) grafts
PDMS poly(dimethyl siloxane)
PE polyethylene
PET poly(ethylene terephthalate)
PMAA poly(methacrylic acid)
PMMA poly(methyl methacrylate)
PNS poly(nitrostyrene)
PP polypropylene
PS polystyrene
PSSA poly(styrenesulfonic acid)
PtBMA poly(tert-butyl methacrylate)
PVBP poly(4-vinylbenzyl)phthalimide grafts
PVC polyvinylchloride
RAFT reversible addition-fragmentation chain transfer polymerization
RBITC rhodamine B isothiocyanate
RDS rate determining step
rms root-mean-square
SAM self-assembled monolayer SEC size-exclusion chromatography
SEM scanning electron microscope
SIP surface-initiated polymerization
SIPGP self-initiated photografting and photopolymerization
SIPP photopolymerization
SPM scanning probe microscopy
St styrene
STM scanning tunneling microscopy
TFA trifluoroacetic acid
UNCD ultrananocrystalline diamond
UV ultraviolet
XPS X-ray photoelectron spectroscopy
μCP microcontact printing


Symbols

φ liquid volume fraction in polymer
d diameter
D electron beam dosage
D' onset corrected electron beam dosage
E electric potential
h polymer layer thickness
h dry polymd
h swollen polymer layer thickness s
I initiator
I XPS emission intensity of element A A
k dissociation rate constant d
k propagation rate constant p
k termination rate constant te
k transfer rate constant tr
M monomer M number average molecular weight n
M molar mass of one monomer unit in the polymer backbone p
N polymer chain length
N Avogadro constant Av
Q degree of swelling, charge
R radius of gyration g
RH relative humidity
R propagation rate p
R termination rate te
R transfer rate tr
S surface area, stability factor of monolayers
t polymerization time p
u absorbance coefficient
w full width at half maximum height 1/2
θ error
λwavelength
μscattering coefficient
ρ bulk density
σgrafting density
χFlory-Huggins interaction parameter
Table of contents
Table of contents


1 INTRODUCTION............................................................................................................ 1
2 BACKGROUND............................................................................................................... 3
2.1 POLYMER GRAFTS: GENERAL FEATURES AND SYNTHESIS ............................................ 3
2.2 SURFACE-INITIATED POLYMERIZATION ....................................................................... 5
2.2.1 Surface-bonded initiator systems ........................................................................... 5
2.2.2 Surface-initiated polymerization versus polymerization in solution: some general
considerations ........................................................................................................ 7
2.2.3 Free radical surface-initiated polymerization ....................................................... 8
2.3 PHOTOGRAFTING....................................................................................................... 11
2.3.1 Photoinitiators...................................................................................................... 11
2.3.2 Bulk surface photografting polymerization.......................................................... 12
2.3.3 Self-initiated photografting and photopolymerization ......................................... 14
2.4 SYNTHESIS OF MICRO AND NANOSTRUCTURED POLYMER GRAFTS ............................. 16
2.5 NANOPATTERNED SURFACE FUNCTIONALITIES 17
2.5.1 Microcontact printing .......................................................................................... 17
2.5.2 Scanning probe microscopy based methods......................................................... 18
2.5.2.1 Dip-pen-nanolithography............................................................................. 18
2.5.2.2 Nanoshaving................................................................................................. 19
2.5.2.3 SPM-tip induced transformations................................................................. 20
2.5.3 Photolithography.................................................................................................. 20
2.5.4 Electron beam lithography....................

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents