Spectroscopic characterization of extrasolar planets from ground-, space- and airborne-based observatories [Elektronische Ressource] / by Daniel Angerhausen
156 pages
English

Spectroscopic characterization of extrasolar planets from ground-, space- and airborne-based observatories [Elektronische Ressource] / by Daniel Angerhausen

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
156 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Spectroscopic Characterization of ExtrasolarPlanets from Ground , Space and Airborne basedObservatoriesA thesis accepted by the Faculty of AerospaceEngineering and Geodesy of the UniversitätStuttgart in partial fulfilment of the requirementsfor the degree of Doctor of Natural Sciences(Dr. rer. nat.)byDaniel Angerhausenborn in Krefeld UerdingenCommittee chair: Prof. Dr. rer. nat. A. Krabbe member: Prof. Dr. rer. nat. W. KleyDate of defence: 17.11.2010German SOFIA InstituteInstitute of Space SystemsUniversität Stuttgart2010Contents0.1. List of abbreviations and acronyms . . . . . . . . . . . . . . . . . . . . . 50.2. Thesis abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70.3. Zusammenfassung der Dissertation . . . . . . . . . . . . . . . . . . . . . 91. Introduction 111.1. Extrasolar planets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.1.1. Science motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 111.1.2. Milestones of discoveries . . . . . . . . . . . . . . . . . . . . . . 121.2. Characterization of extrasolar planets . . . . . . . . . . . . . . . . . . . . 141.2.1. Observational challenges . . . . . . . . . . . . . . . . . . . . . . . 141.3. Spectroscopy of exoplanetary atmospheres . . . . . . . . . . . . . . . . . 161.3.1. Optical and infrared transit spectrophotometry . . . . . . . . . . . 161.3.2. Comparative spectroscopy of exoplanet atmospheres . . . . . . . 191.4.

Sujets

Informations

Publié par
Publié le 01 janvier 2010
Nombre de lectures 34
Langue English
Poids de l'ouvrage 4 Mo

Extrait

Spectroscopic Characterization of Extrasolar
Planets from Ground , Space and Airborne based
Observatories
A thesis accepted by the Faculty of Aerospace
Engineering and Geodesy of the Universität
Stuttgart in partial fulfilment of the requirements
for the degree of Doctor of Natural Sciences
(Dr. rer. nat.)
by
Daniel Angerhausen
born in Krefeld Uerdingen
Committee chair: Prof. Dr. rer. nat. A. Krabbe member: Prof. Dr. rer. nat. W. Kley
Date of defence: 17.11.2010
German SOFIA Institute
Institute of Space Systems
Universität Stuttgart
2010Contents
0.1. List of abbreviations and acronyms . . . . . . . . . . . . . . . . . . . . . 5
0.2. Thesis abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
0.3. Zusammenfassung der Dissertation . . . . . . . . . . . . . . . . . . . . . 9
1. Introduction 11
1.1. Extrasolar planets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.1. Science motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.2. Milestones of discoveries . . . . . . . . . . . . . . . . . . . . . . 12
1.2. Characterization of extrasolar planets . . . . . . . . . . . . . . . . . . . . 14
1.2.1. Observational challenges . . . . . . . . . . . . . . . . . . . . . . . 14
1.3. Spectroscopy of exoplanetary atmospheres . . . . . . . . . . . . . . . . . 16
1.3.1. Optical and infrared transit spectrophotometry . . . . . . . . . . . 16
1.3.2. Comparative spectroscopy of exoplanet atmospheres . . . . . . . 19
1.4. Strategic considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2. Ground based: Transit Spectroscopy using the SINFONI Instrument 23
2.1. Observational hurdles in ground based astronomy . . . . . . . . . . . . . 23
2.2. Adaptive optics assisted imaging spectroscopy with SINFONI . . . . . . 25
2.2.1. Adaptive optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2. Integral field spectroscopy . . . . . . . . . . . . . . . . . . . . . . 26
2.2.3. The SINFONI instrument . . . . . . . . . . . . . . . . . . . . . . 28
2.3. Advantages of integral field units for transit observations . . . . . . . . . 31
2.4. Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.1. Target selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.2. HD 209458b on August, 13th, 2005 . . . . . . . . . . . . . . . . 34
2.4.3. HD 189733b on 10th, 2007 . . . . . . . . . . . . . . . . 37
2.4.4. Calibration strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5. Basic data reduction: standard pipeline . . . . . . . . . . . . . . . . . . . 40
2.6. Method A: Broad band analysis at full spectral resolution . . . . . . . . . 46
2.6.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.6.2. Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.6.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.7. Parametrization of changes in atmospheric trace gas concentrations . . . 53
2.7.1. Basic concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.7.2. Correlation with other observational parameters . . . . . . . . . . 56
1Contents
2.7.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.8. Method B: analysis of predicted narrow line features . . . . . . . . . . . . 61
2.8.1. Decorrelation method . . . . . . . . . . . . . . . . . . . . . . . . 62
2.9. Conclusions of Method A and B . . . . . . . . . . . . . . . . . . . . . . . 64
2.10. Method C: The self coherence method . . . . . . . . . . . . . . . . . . . 65
2.11. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3. Space based: HST NICMOS observation of GJ436b 71
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2. Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3. Data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3.1. Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.2. Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3.3. Testing for Rayleigh scattering . . . . . . . . . . . . . . . . . . . 90
3.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4. Airborne based: Observing extrasolar Planets with SOFIA 99
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.1.1. SOFIA - general advantages . . . . . . . . . . . . . . . . . . . . . 99
4.1.2. compared with other observatories. . . . . . . . . . . . . 101
4.2. Science cases with SOFIA . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2.1. Strategic considerations . . . . . . . . . . . . . . . . . . . . . . . 103
4.2.2. Transit photometry and spectroscopy . . . . . . . . . . . . . . . . 105
4.2.3. Examples using HIPO FLITECAM . . . . . . . . . . . . . . . . . 106
4.3. Future instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.3.1. Multi object spectrometer . . . . . . . . . . . . . . . . . . . . . . 114
4.3.2. Coronagraph imager . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5. Summary and Outlook 119
5.1. Synopsis of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2. Future perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A. Appendix I 123
A.1. Transit timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.1.1. Time difference of secondary eclipse central time . . . . . . . . . 124
A.1.2. Duration of secondary eclipse . . . . . . . . . . . . . . . . . . . . 125
A.2. Signal to noise calculations for ground based observations . . . . . . . . 127
A.2.1. Contrast planet star . . . . . . . . . . . . . . . . . . . . . . . . . . 128
A.2.2. Imaging, adaptive optics . . . . . . . . . . . . . . . . . . . . . . . 130
A.2.3. Sum: seeing and diffraction . . . . . . . . . . . . . . . . . . . . . 132
A.2.4. Saturation and background . . . . . . . . . . . . . . . . . . . . . . 133
A.2.5. Contribution from thermal background . . . . . . . . . . . . . . . 135
A.2.6.ution from sky . . . . . . . . . . . . . . . . . 135
2Contents
A.2.7. Maximum integration time . . . . . . . . . . . . . . . . . . . . . 136
A.2.8. Signal to noise ratio . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.2.9. Application to my observation . . . . . . . . . . . . . . . . . . . . 137
A.3. Observing efficiency: optimized frequency of sky observations . . . . . . 139
A.3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
A.3.2. Defining the problem . . . . . . . . . . . . . . . . . . . . . . . . . 139
A.3.3. Maximize the efficiency . . . . . . . . . . . . . . . . . . . . . . . 140
A.3.4. Application to my observation . . . . . . . . . . . . . . . . . . . . 141
B. Appendix II 145
B.1. Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
B.1.1. Python routines used, SINFONI pipeline . . . . . . . . . . . . . . 145
B.1.2. The SPIFFI/SINFONI Instrument . . . . . . . . . . . . . . . . . . 146
B.1.3. The Very Large Telescope . . . . . . . . . . . . . . . . . . . . . . 146
Bibliography 147
Acknowledgements 153
3Contents
4List of abbreviations and acronyms
0.1. List of abbreviations and acronyms
AO Adaptive Optics
CCD Charge coupled Device
CoRoT COnvection, ROtation and planetary Transits
DIT Detector Integration Time
DDT Director’s Discretionary Time
DRP data reduction pipeline
ESO European Organisation for Astronomical Research in the Southern Hemisphere
ExoPTF ExoPlanet Task Force
FIR far infrared
FLITECAM First Light Infrared Test Experiment CAMera
FOV field of view
FRD Focal Ratio Degradation
FWHM full width at half maximum
HAT Hungarian made Automated Telescope
HIPO High speed Imaging Photometer for Occultation
HST Hubble Space Telescope
IFS Integral Field Spectroscopy
IFU integral field unit
IR infrared
IRAC Infrared Array Camera
IRTF InfraRed Telescope Facility
JWST James Webb Space Telescope
LMSS Lower Main Sequence Stars
LCP Lomb Scargle periodogram
MACAO Multi Application Curvature Adaptive Optics
MAL micro lens array
mas milli arcsecond
MIR mid infrared
MOS multi object spectroscopy
NASA National Aeronautics and Space Administration
NDIT Number of sub integrations with DIT
NEO near earth Orbit
NICMOS Near Infrared Camera and Multi Object Spectrometer
NIR near infrared
NWO New World Observer
OSIRIS OH Suppressing Infra Red Imaging Spectrograph
PAC Pupil Apodization Coronagraph
PAM pupil alignment mechanism
ppm parts per million
PSF Point Spread Function
PT primary transit
5List of abbreviations and acronyms
RV radial velocity
S/N signal to noise ratio
SINFONI Spectrograph for INtegral Field Observations in the Near Infrared
SE secondary eclipse
SOFIA Stratospheric Observatory for Infrared Astronomy
SpeX IRTF Medium Resolution IR Spectrograph
SPIFFI SPectrograph for Infrared Faint Field Imaging
SST

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents