background image

Les Nombres Parfaits

6

pages

Français

Documents scolaires

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

6

pages

Français

Documents scolaires

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Secondaire, Lycée, SecondeLes Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2nde Lycée MONTAIGNE BORDEAUX) et Alexandre DEVERT , Pierre Damien DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie est l'étude faite par trois élèves de seconde. La deuxième partie ,qui complète « parfaitement » la première a été rédigée par les élèves de TS. PARTIE 1 Un nombre parfait est un nombre dont la somme de ses diviseurs propres est égale à ce nombre, ou, sous une autre formulation, un nombre dont la somme de ses diviseurs est égale à deux fois ce nombre. Pour mieux comprendre, prenons le premier nombre parfait : 6. Par la première formulation, on peut dire que 6=1+2+3. Et par la deuxième formulation , on a également que 12= 2x6 =1+2+3+6. Nous avons remarqué,en faisant de nombreux essais que les nombres parfaits pairs semblaient s'écrire sous la forme 2n. P, avec P nombre premier, et que P est de la forme 2n+1-1, avec n+1 premier. Les sept premiers nombres parfaits pairs sont : 6 = 2x3 = 1+2+3 avec n=1 6 = 21(22-1) 28 = 4x7 = 1+2+4+7+14 avec n=2 28=22(23-1) 496 = 16x31 = 1+2+4+8+16+31+62+124+248 avec n=4 496=24(25-1) 8 128 = 64 x 127 = 1+2nnnn asdasdaasd élèves de ts nnn bbb entier calculs de décompositions manuels nde du lycée ts lycée sud
Voir icon arrow

Publié par

Langue

Français

Les Nombres Parfaits.nde Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2Lycée MONTAIGNE BORDEAUX) et AlexandreDEVERT , Pierre Damien DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC)La première partie est l’étude faite par trois élèves de seconde.Ladeuxième partie ,qui complète «parfaitement» la première a été rédigée par les élèves de TS.PARTIE 1Un nombre parfait est un nombre dont la somme de ses diviseurs propres est égale àcenombre,ou,sousuneautreformulation,unnombredontlasommede ses diviseurs est égale à deux fois ce nombre.Pour mieux comprendre, prenons le premier nombre parfait : 6. Par la première formulation, on peut dire que 6=1+2+3. Et par la deuxième formulation , on a également que 12= 2x6 =1+2+3+6. Nous avons remarqué,en faisant de nombreux essais que lesnombresparfaitspairssemblaientsécriresouslan formeP,2 .avec P nombre premier,n+1 et que P est de la forme 21, avec n+1 premier.Les sept premiers nombres parfaits pairs sont : 6= 2x3 = 1+2+3 avec n=1 1 2 6 = 2 (21) 28= 4x7 = 1+2+4+7+14 avec n=2 2 3 28=2 (2 1) 496= 16x31 = 1+2+4+8+16+31+62+124+248 avec n=4 4 5 496=2 (2 1) 8128= 64 x 127 = 1+2+4+8+16+32+64+127+254+508+1 016+2 032+4 046 avec n=6 6 7 8 128 = 2(2 1) 33550 336= 4 096 x 8 191 avec n=12 12 13 33 550 336 = 2(2 1) 8589869056= 65 536 x 131 071 avec n=16 16 17 8 589 869 056 = 2(2 1) 137438691328= 262 144 x 524 287 avec n=18 18 19 137 438 690 328 = 2(2 1)
Voir icon more
Alternate Text