An explicit result of the sum of seven cubes
21 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

An explicit result of the sum of seven cubes

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
21 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

An explicit result of the sum of seven cubes ? O. Ramare 29th June 2007 Abstract We prove that every integer ≥ exp(524) is a sum of seven non negative cubes. 1 History and statements In his 1770's ”Meditationes Algebraicae”, E.Waring asserted that every pos- itive integer is a sum of nine non-negative cubes. A proof was missing, as was fairly common at the time, the very notion of proof being not so clear. Notice that henceforth, we shall use cubes to denote cubes of non-negative integers. Consequently, the integers we want to write as sums of cubes are assumed to be non-negative. Maillet in [15] proved that twenty-one cubes were enough to represent every (non-negative) integer and later, Wieferich in [30] provided a proof to Waring's statement (though his proof contained a mistake that was mended in [12]). The Gottingen school was in full bloom and Landau [13] showed that eight cubes suffice to represent every large enough integer. Dickson [7] improved on this statement by establishing that the only exceptions are 23 and 239. The reader will find a full history of the subject in chapter XXV of [8]. Finally, Linnik in [14] showed that every large enough integer is a sum of seven cubes.

  • rough philosophy when

  • every integer

  • arithmetic progressions modulo

  • large sieve

  • prime

  • represent every

  • when compared


Sujets

Informations

Publié par
Nombre de lectures 15
Langue English

Extrait

AnexplicitresultofthesumofsevencubesO.Ramar´e29thJune2007AbstractWeprovethateveryintegerexp(524)isasumofsevennonnegativecubes.1HistoryandstatementsInhis1770’s”MeditationesAlgebraicae”,E.Waringassertedthateverypos-itiveintegerisasumofninenon-negativecubes.Aproofwasmissing,aswasfairlycommonatthetime,theverynotionofproofbeingnotsoclear.Noticethathenceforth,weshallusecubestodenotecubesofnon-negativeintegers.Consequently,theintegerswewanttowriteassumsofcubesareassumedtobenon-negative.Mailletin[15]provedthattwenty-onecubeswereenoughtorepresentevery(non-negative)integerandlater,Wieferichin[30]providedaprooftoWaring’sstatement(thoughhisproofcontainedamistakethatwasmendedin[12]).TheGo¨ttingenschoolwasinfullbloomandLandau[13]showedthateightcubessufficetorepresenteverylargeenoughinteger.Dickson[7]improvedonthisstatementbyestablishingthattheonlyexceptionsare23and239.ThereaderwillfindafullhistoryofthesubjectinchapterXXVof.]8[Finally,Linnikin[14]showedthateverylargeenoughintegerisasumofsevencubes.Sincethen,therehasbeennofurtherimprovementsintermsofthenumberofcubesrequired.Noticethatthecirclemethodreadilyprovesthatalmostallintegersaresumsofatmostfourcubes.Fromanexperimentalandheuristicalviewpoint,computationsandar-gumentsdevelopedin[2],[27],[16],[1],[6]tendtosuggestthateveryinteger1014isasumoffourcubes.Theargumentin[6]evenleadsustobelieveMSC2000:primary11P05,11Y50;secondary11B131
that7373170279850isthelastintegerthatisasumoffivecubesbutnotoffour.Whenitisrequiredtoexhibitalargeexampleofanintegerthatisasumoffivecubes,butnotoffour,thesimplestexampleIknowis109+4.Similarly,itisbelievedthat454isthelargestintegerthatisasumofatleasteightcubes,that8042isthelargestintegerthatisasumofsevencubesbutnotofsixandthat1290740playsthisrolewithrespecttosumsofsixcubes.Bydensityconsiderations(therearelessthanX1/3cubeslessthanX),weseethateveryintegercannotbeasumofthreecubes.ThesamewouldfollowbystudyingsumsofthreecubesinZ/9Z.Butnothingpreventssumsofthreecubestohavepositivelowerdensity,ahypothesisbelievedtobetruebyHooleyin[11].TheretheauthorprovesthatthisdensityisstrictlylessthanΓ(4/3)3/6,thisvaluecomingfromsizeconsiderationsonly.Hooleyevenimprovesonitbytakingadvantageofsomedisparitiesinthedistributionofcubesinsomearithmeticalprogressions.Theprobabilisticmodelsof[5]ofsumsof3cubessupportsthisconjecture,whilegivingadensitythattendstozeroforsumsoftwosquares(aresultknowntobetruebyatheoremofLandau),asthemodeltakesmoreandmorelocalobstructionsintoaccount.Thisisincontrastwithapreviousprobabilisticmodel(exposedin[10])ofErdo¨sforsuchsumsthatpredictsapositivedensityforsumsofthreecubesbutalsoforsumsoftwosquares,andofcoursegivesstrongergroundtotheinitialconjecture.Infact,x3+y3+z3isnotanormandinturn,lackstheensuingmultiplicativity.In[6],itisshownthateveryintegerbetween1290741and1016isasumoffivecubesfromwhichonereadilydeduces(see[23])thateveryintegernverifying455nexp(78.7)isasumofsevennon-negativecubes.Ontheotherhand,notethatitisprovedin[1]thateveryintegerinsomespecialarithmeticprogression,andlargerthan455isindeedasumofsevencubes.Ourconcerninthispapertoshowthateveryintegerlargerthanagivenexplicitboundisindeedasumofsevencubes.WeprovethatTheorem1Everyintegernexp(524)isasumofsevencubes.Watson[29]hadalreadygreatlysimplifiedLinnik’soriginalproof,thoughitremainedineffective,andindependently,McCurley[16]andCook[4]cor-rectedthisdefect.McCurley[16]evenprovedatheoremsimilartotheoneabovewith1077334insteadof524.Themethodweusehasbeenpartiallysetin[23]wherewehadasimilarstatementbutwith205000insteadof524.Inboththeseapproaches,thecruxofthemethodwastoshowthatsomearithmeticprogressiondidindeedcontainafairlysmallprimeandthebattlewasonthelinkbetweenthesizeofthemodulusqinvolvedandthesizeofthewantedprime.IfthelaterwasofsizeX,McCurley’sproofneededa2
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents