CCSE 2004 concours Maths 1 PC

icon

7

pages

icon

Français

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

7

pages

icon

Français

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

CCSE 2004 concours Maths 1 PC
Voir icon arrow

Publié par

Nombre de lectures

206

Langue

Français

MATHƒMATIQUES IFiliËre PC MATHƒMATIQUES I
n Dans tout le problËme,a=(a)dÈsigne une suite de complexes eta z n nINn la sÈrie entiËre associÈe, dont le rayon de convergenceRest supposÈ non nul a et Þni. n On noteCdes complexes lÕensemblezmodule deR telsquea z a an est convergente. On appelle cercle unitÈ lÕensemble des complexes de module 1 : un complexez appartient au cercle unitÈ si et seulement sÕil existe un rÈelx appartenant ix lÕintervalleI= ]Ðπ,π]tel quez=e. DÕautre part on note:2πZZ={2kπkZZ}, et[[p,q]]lÕensemble des dÈsigne entiers naturelskvÈriÞant :pkq. On Ètudie diffÈrentes sÈries entiËres pour lesquelles lÕensembleCprend diffÈ-a rentes formes. Dans le cas o˘Cest un cercle, on propose dÕobserver diffÈrents comportements a de la fonction somme de la sÈrie entiËre sur ce cercle.
Partie I - Calculs prÈliminaires Les rÈsultats de cette partie sont destinÈs ‡ prÈparer les dÈmonstrations des parties suivantes. I.A -Montrer les inÈgalitÈs : 2 x[0,π],0sinxxetx[0,πÚ2],sinx-x. π I.B -Montrer que pour toutx quiappartient ‡IR\2πZZ etpour tout couple dÕentiers naturels(p,q)tel quepq: q ikx 1 e. -x k=p  sin-  2 I.C -Soient(u)et(v)deux suites complexes. n*n* nINnIN
Concours Centrale-SupÈlec 2004
1/7
Voir icon more
Alternate Text