Météorologie (master 1) 2006 Ingénieur des travaux de la météorologie Ecole Nationale de la Météorologie
7 pages
Français

Météorologie (master 1) 2006 Ingénieur des travaux de la météorologie Ecole Nationale de la Météorologie

-

Cet ouvrage peut être téléchargé gratuitement

Description

Examen du Supérieur Ecole Nationale de la Météorologie. Sujet de Météorologie (master 1) 2006. Retrouvez le corrigé Météorologie (master 1) 2006 sur Bankexam.fr.

Sujets

Informations

Publié par
Publié le 27 août 2008
Nombre de lectures 77
Langue Français
METEO-FRANCE ECOLE NATIONALE DE LA METEOROLOGIE CONCOURS SPECIAL 2006 D’ELEVE-INGENIEUR DES TRAVAUX DE LA METEOROLOGIE - :- :- :- :- :- :- :- :-EPREUVE ECRITE DE METEOROLOGIE - :- :- :- :- :- :- :- :-Durée : 4 heuresCoefficient : 5 P.J. :2 émagrammes (A remettre avec la copie) _______________  Lestrois parties sont indépendantes et doivent être traitées toutes les trois. La clarté des explications et le soin apporté à la rédaction seront pris en compte dans la notation.  REDIGERLES PARTIES I, II et III SUR DES FEUILLES SEPAREES.  Siles candidats sont amenés à rendre des documents annexes à la copie et sur lesquels ils auront travaillé (émagrammes), ils y porteront le NOM DU CENTRE et leur NUMERO de PLACE, à l’exclusion de toute autre information. - :- :- :- :- :- :-- PARTIE I -COUCHE LIMITE Le système (S) représente les équations d’évolution à petite échelle des composantes zonales u et v du vent U .ρ estla masse volumique de l’air supposée constante, f le paramètre de coriolis,p la 0 pression etυle coefficient cinématique de viscosité. La température potentielle est supposée constante jusqu’au sommet de la couche limite. 2 2 2 duuuu 1p =υ.(+ +)+fv2 2 2 dtxyzρx 0 2 2 2 dvvvv 1p =υ.(+ +)fu (S) 2 2 2 dtxyzρy 0 u v w + +=0 xyz
Page 1 sur 7
1) Donnerla signification physique des termes qui composent ce système, établir les équations d’évolution descomposantes zonales moyennesu etv, pour cela, on appliquera un opérateur de moyenne vérifiant les axiomes de Reynolds au système (S) en décomposantu=u+u',v=v+v',w=w+w',p=p+p'(u',v',w',p' représententles fluctuations de vitesse et pression). Simplifier le système ainsi trouvé en supposant que l’atmosphère esthomogène horizontalement excepté pour le terme de pression. On posera : 1p 1p u= −;vomposantes du vent géostrophique g g= ,uget vgsont les c y fρx 0 0 2)On se propose de fermer le système au premier ordre. Donner en introduisant un coefficient d’échange Kudes flux verticaux de quantité de mouvement. Dans le cas d’une l’expression couche limite atmosphérique stationnaireet homogène horizontalement, montrer que l’on peut exprimer Kupar la relation: 1 z  2 2 vu K (z)=f. uv((u+- (u.uv )+v.v ))dz u g g zz  z 0  (z0est la hauteur de rugosité)3)On s’intéresse maintenant à l’étude de la Couche Limite Superficielle (CLS). Simplifier le système d’équations d’évolution des composantes moyennes du vent moyen précédemment établi en appliquant de nouvelles hypothèses très largement utilisées dans l’étude de la CLS. Quelle est la particularité des flux dans la CLS ?Dans la réalité, ce résultat est il vérifié ? En première approximation, montrer que le vent à une direction constante jusqu’au sommet de la CLS.4)Sur le tableau ci-dessous figurent des valeurs des composantes du vent horizontal à différentes hauteurs. Z(m)0,3 0,7 1,0 2,0 10,020,0 50,0 100,0 1 2,4 3,0 3,2 3,7 4,8 5,3 5,0 5,0 u(ms ) 1,8 2,2 2,4 2,8 3,6 4,0 5,0 6,0 1 v(ms ) déterminer la forme des profilsPouvez vous dans les conditions de l’exercice  verticauxde la température moyenneT(z) et de l’intensitéU(z)du vent horizontal.  Exprimeren fonction du venthorizontalU1,U2niveaux Z aux1et Z2 ,l’expression  dela vitesse de frottement u*, de la hauteur de rugosité z0et du coefficient d’échange  KuZ de la CLS.un niveau à  Effectuerles applications numériques pourcalculer u*, z0. Après avoir, tout en  justifiantvotre réponse, évalué la hauteur de la CLS. Calculer le coefficient d’échange  Kuau sommet de la CLS.  Onprendra k la constante de Karman = 0,4.
Page 2 sur 7
- PARTIE II -METEOROLOGIE DYNAMIQUE On considère une onde constituée par une dorsaleHsituée entre deux thalwegsBidentiques. Cette onde se déplace aux latitudes moyennes et au niveau de pression 500 hPa (Cf : figure). Les courbes de niveau (isohypses) de cette surface isobare ont des valeurs de cotation notées Z1, Z2et Z3Z uivérifient, arconvention :2- Z1= Z3- Z2= 40 m
Z <Z <Z NORD1 2 3 B B Z 1 V g1 N Z 2 ΔL 1 M ΔL Z 2 V 3 g2
ΔL ΔL H EST La distance horizontale ΔL1séparant les isohypses de cotation Z1et Z2est de 250 km. La distance horizontale ΔL2, séparant les isohypses de cotation Z2et Z3, est de 300 km. Les distances ΔL entre chaque thalwegBet la dorsaleHsont de 1000 km. Le rayon de courbure RB, dans le creux du thalweg, est de 600 km. Celui qui caractérise la dorsale, noté RH, est de -800 km. 1]a]la définition du vent géostrophique, ses domaines d’application, et le Donner niveau de l’approximation du vent réel qu’il permet à l’échelle synoptique. b] Evaluerles vents géostrophiquesV, entre les isohypses de cotation Z1 etZ2, et g1 V, entre les i g2sohypses de cotation Z2et Z3. -4 -1 On considère pour cela que le paramètre de Coriolis est égal à 10s surla zone. 2] a]Définir le paramètre tourbillon relatif utilisé en météorologie et expliciter la relation qui le lie à la circulation autour d’un circuit ferméCdélimitant une surfaceS. b]Montrer que le tourbillon relatif peut s’exprimer sous la forme : V V ζ = −+n R
Page 3 sur 7
V où V est le module du vent,le cisaillement horizontal du vent évalué suivant la normale n à l’écoulement et R le rayon de courbure. c] Evaluerle tourbillon relatif au niveau d’altitude Z2le thalweg dansB, dans la dorsaleHet au point M situé entre les extremaBetH. 3] Onestime (Cf. figure) que sur l’isohypse Z2le vent est de secteur sud-ouest au point M, entreBetH, et de secteur nord-ouest au point N, à l’Est deH. Son intensité est la moyenne de celles deVet deV. On estime de plus que les gradients du tourbillon relatif g1 g2 sont zonaux. a]En déduire les advections de tourbillon relatif (ATR) en M et en N. b]En considérant le tourbillon absolu comme conservatif, indiquer dans quel sens se fait le déplacement de l’onde formée parBetHlié à la contribution de l’ATR. Justifier. 4]On estime que le rayon de la Terre est de 6371 km. a] Calculerla variation du paramètre de Coriolis par mètre parcouru sur un arc de méridien. b]Calculer les advections du tourbillon planétaire (ATP) en M et en N. c]En considérant le tourbillon absolu comme conservatif, indiquer dans quel sens se fait le déplacement de l’onde formée parBetHlié à la contribution de l’ATP. Justifier. 5] a]Comparer les advections des tourbillons relatif et planétaire. En déduire l’évolution de l’onde associée à ces seuls termes. b]On estime le flux non-divergent sur la surface 500 hPa. Quel modèle simplifié pourrait être utilisé pour représentee un tel écoulement ? Evoquer les principales approximations qui le rendraient relativement éloigné de la réalité. c]divergence du vent horizontal est négative au niveau de la tropopause à la La verticale deHet positive à la verticale deB. Indiquer et justifier quels effets cela engendre sur la propagation de l’onde. - PARTIE III -METEOROLOGIE GENERALE Les trois exercices sont indépendantsDonnées -8-2-4constante de la loi de Stefan-Boltzmann :σ= 5,67 10W mK -6 constante de la loi de Wien: 289810 mK PARTIE A : Généralités sur l’atmosphère
Page 4 sur 7
1) Qu’est-ceque la « zone de convergence inter-tropicale » (ZCIT) ? Décrire sa position par rapport à l’équateur géographique en fonction de la saison. Comment repérer la ZCIT sur une image satellitaire dans le domaine infra-rouge ? PARTIE B : Rayonnement 2) Donnerla définition d’un corps noir. Enoncer les lois de Stefan-Boltzmann et de Wien caractérisant le rayonnement du corps noir, en prenant soin de définir les grandeurs apparaissant dans ces équations, et de donner leur unité. 3) Sil'on admet que la température de la surface du soleil est de 6000 K et celle de la surface de la terre de 300 K, et si l'on considère qu'ils sont tous les deux des corps noirs, calculer les longueurs d'onde correspondant aux émissions maximales pour ces deux corps. Préciser dans quels domaines se situent ces longueurs d'onde. 4) Caractériserglobalement le bilan radiatif moyen de la surface de la terre, et celui de l’atmosphère. Décrire schématiquement le profil vertical de température qu’on observerait dans la troposphère si le seul mode de transport d’énergie était le rayonnement. Quels autres processus physiques interviennent en fait, et permettent de modifier complètement ce profil ? 5) Décrirele bilan radiatifdu système Terre-atmosphère, en tenant compte maintenant de la latitude. Quelles circulations atmosphériques vont se mettre en place, en réponse à ce bilan ? 6)a)On suppose que la Terre est dépourvue d’atmosphère. On noteal’albédo planétaire (dans le spectre solaire)et I la puissance moyenne en provenance du soleil arrivant 2 sur une surface de 1 m . Exprimer la température moyenne d’équilibre radiatif de la Terre en fonction deaet I. -2Faire l’application numérique en prenanta= 0,3 et I = 344 Wm. b)se propose d’étudier l’influence de l’atmosphère sur la température moyenne On d’équilibre radiatif de la terre, avec un modèle très simplifié : on supposeque l’atmosphère se comporte comme une vitre, qui n’absorbe pas le rayonnement solaire (incident ou réfléchi à cause de l’albédo), mais absorbe une très grande partie du rayonnement tellurique : en notant U le rayonnement tellurique, l’atmosphère absorbe une puissanceeU, avece= 0,8. On suppose de plus, pour simplifier, que la puissance rayonnée par l’atmosphère vers la terre (notée B) est égale à la puissance rayonnée par l’atmosphère vers l’espace. Le rayonnement atmosphérique atteignant le sol est intégralement absorbé.
Page 5 sur 7
aI (1-e)U  B ATMOSPHERE  B  IaI SOL Exprimer la température moyenne d’équilibre radiatif de la Terre en fonction dea, eet I. Faire l’application numérique, en prenant pouraet I les mêmes valeurs que précédemment. Conclure sur l’influence de l’atmosphère sur la température d’équilibre radiatif du sol. Comment appelle-t-on cet effet ? PARTIE C : Thermodynamique atmosphérique 7) A18 UTC,une particule d’air au sol présente les caractéristiques suivantes : P = 1015 hPa T = 12 °C T =6 °C d Déterminer à l’aide d’un émagramme son rapport de mélange, son humidité relative, sa température pseudo-adiabatique potentielle du thermomètre mouillé. Cette particule subit ensuite un refroidissement isobare. Sa température varie comme indiqué ci-après : A 21 UTC : 8,5 °C A 00 UTC : 6 °C A 03 UTC : 3,5 °C A 06 UTC : 2 °C ; cette dernière température est la température minimale de la nuit. En supposant qu’il n’y a pas de dépôt d’eau liquide sur le sol, quel phénomène risque-t-on d'observer au cours de la nuit ? A quelle heure ? Quelle sera la masse d'eau condensée par kg d'air sec au moment du minimum de température? 8) Cettepartie consiste en un questionnaire à choix multiples. Pour chaque question, vous noterez sur votre copie le numéro de la question, et la lettre correspondant à la réponse sélectionnée. Il y a une seule réponse correcte par question.
Page 6 sur 7
Question 1 On considère de l’air humide. La température à laquelle il faudrait porter de l'air absolument sec pour qu'il ait la même masse volumique que l'air humide considéré, à la même pression, s'appelle : A) température du point de rosée B ) température de condensation C) température pseudo-adiabatique potentielle du thermomètre mouillé D) température virtuelle Question 2 Il est possible de calculer l’humidité relative d’une particule dont on connaît seulement: A) la température du point de rosée et le rapport de mélange B) la température et la température du point de rosée C) la température et la tension de vapeur saturante D) la température et la température potentielle Question 3 Quelle combinaison de 3 paramètres permet de représenter, sur un émagramme, le point d’état et le point de rosée d’une particule d’air atmosphérique? A) Pression, température du point de rosée et rapport de mélange B) Pression, température et rapport de mélange saturant C) Température potentielle, rapport de mélange et rapport de mélange saturant D) Pression, température potentielle et rapport de mélange saturant Question 4 Au cours d’une compression adiabatique, les variations de température au sein d’une particule d’air sont dues uniquement : A) Au travail des forces de pression B) Au dégagement de chaleur latente C) Aux échanges par conduction avec l’air environnant D) Au réchauffement diurne au niveau du sol Question 5 La température à laquelle une particule d’air se sature au cours d’un refroidissement isobare s’appelle : A) température potentielle B) température de condensation C) température du point de rosée D) température du thermomètre mouillé Question 6 Parmi les transformations thermodynamiques suivantes, une seule absorbe de la chaleur. Laquelle ? A) la solidification B) la condensation solide C) la condensation D) la sublimation *************************************************************************
Page 7 sur 7