Dans cette lec¸on on va etudier l exemple le plus simple d option exotique c est a dire d option dont la valeur n est pas seulement fonction des valeurs atteintes par l actif sous jacent a l echeance mais aussi de toutes les valeurs qu il prend pendant la duree du contrat De telles options s appellent aussi des options dependant du chemin L etude des options barrieres sera aussi l occasion de rencontrer la notion de temps d arret et surtout le joli principe de reflexion d Andre
8 pages
Français

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Dans cette lec¸on on va etudier l'exemple le plus simple d'option exotique c'est a dire d'option dont la valeur n'est pas seulement fonction des valeurs atteintes par l'actif sous jacent a l'echeance mais aussi de toutes les valeurs qu'il prend pendant la duree du contrat De telles options s'appellent aussi des options dependant du chemin L'etude des options barrieres sera aussi l'occasion de rencontrer la notion de temps d'arret et surtout le joli principe de reflexion d'Andre

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
8 pages
Français
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Niveau: Secondaire, Lycée
Chapitre 7 Options barrieres Dans cette lec¸on, on va etudier l'exemple le plus simple d'option exotique, c'est-a-dire d'option dont la valeur n'est pas seulement fonction des valeurs atteintes par l'actif sous-jacent a l'echeance mais aussi de toutes les valeurs qu'il prend pendant la duree du contrat. De telles options s'appellent aussi des options dependant du chemin. L'etude des options barrieres sera aussi l'occasion de rencontrer la notion de temps d'arret et surtout le joli principe de reflexion d'Andre. 7.1 Definitions et exemples Une option barriere (T, ?(ST ), L) est une produit derive sur un actif sous-jacent (St)t?T pour lequel le versement de la fonction de paiment ?(ST ) a l'echeance T est soumis au fait que l'actif sous-jacent ait franchi ou non, durant la duree de vie du contrat, vers le haut ou vers le bas, une barriere L donnee. Il existe une grande variete d'option barriere ; on peut ranger les plus courantes en deux categories : – les knock-out : l'option expire automatiquement lorsque le sous-jacent touche la barriere. – les knock-in : l'option n'est activee que si le sous-jacent touche la barriere. Par ailleurs, ces options s'appellent put, call, options binaires, etc, .

  • ln ls0 ln

  • developpement du marche des options barrieres

  • instant precedent

  • lieu necessairement au meme instant

  • marche binomiale

  • principe de symetrie d'andre

  • option


Sujets

Informations

Publié par
Nombre de lectures 29
Langue Français

Extrait

Chapitre7
n
X x i k Y y j l ni j i;j
n x X yij i j
Y
y y y1 j l
x n n n n1 1;1 1;j 1;l 1
x n n n n2 2;1 2;j 2;l 2

x n n n ni i;1 i;j i;l i

x n n n nk k;1 k;j k;l k
n n n n1 j l
k lXX
n =n:i;j
i=1 j=1
nijx ;y f =i j ij n
X X Y Y
x ni i
lX
n = n ;i ij
j=1
X x x x1 i k
n n n n1 i k
1observndivonindid'un.as,distributioncdeceyDans.doncOnstatistiques(laariablesetv).detosedalit?Coupledalit?dispquantit?On7.1.marginale.tenir.estclasse.vlasodesommestrelet,cenlendeoilapEectifunlaen.trer)concen(se)tmaenellera.et.le.deeuvariablep:classesueraleslesues,eectifstinaleursconos?distributions1lesnoteraourbrepourquesuivtMod?randusitonslacTencaract?rediscr?tes,otal.ultan?menOnlesSomme.sevram?nerala?aleursdesdedistributions?:.teDistributionsanrginalessuivappformedistributionladedelatigencedeconsansdecomptetableaucaract?reCommevtousprendlesignor?e)individusonapparaissenqtlesunealeurstvfoislesdansasleci?stableau,(oncompadesdeuxpartiellescaract?res?surOnuneoupnomopulationd'idepindividus.obtenirLetableaucanaract?re:prenddalit?sD?nitioni18aOnanapp?elfoislermoadufrotal?marginalquenc.eettotaleTdu.simmoeducaract?re(coupleseulenix X f =i i n
Y
Y y y y1 j l


k l k lXX X X
n = n = n =n = n :i;j i j
i=1 j=1 i=1 j=1
n y Bj j
X Y Y y Yj
X Y yj
x yi j
nijj(f ) = :i
nj
Y
x Xi
X
XX
x = f x (=x) ij i
i j
27conditio50nnellesvOn39pconditionnelleseut(ann?es)restreindre30les20observ33ationseauxourfr?quence42marginal26Eectif34individus46qui24pr?sen29ten41ttrancladonn?esvllesaleurx?eotal35T43du58caract?re27de31(une36seule42colonne53est22consid?r?e24dans28le30table35au45derconExercicetingence).tingenceLaModistributionSTconditionnellel'?ge,d'unecat?gorievCat.ariable32dalit?s40,43p49our55Mo22x?,27(29.31?gal33?36ariable38v39,44mo51dali20t?21ou23v24ale26ur,28ou28la29appartenan32t33?38une43classe45donn?e)laeste,lad'?gedistributionExprimerstatistiquededespartirvtes.aleursennesdeTISTIQUESDistributionsmarginale7.2RemarqueourCHAPITRE,deenpselalimitanD?nitiont:auxAgeindividusAp;our;lesquels;p;est;?gal;?;m?me;de;(ouBappartien;t;?;une;classe;donn?e).;On;d?nit;al;ors;la;fera;conditionnelle;de;On;.;sac;han;t;quantit?Cla;par;de;valeur;la;de;ginale;mar;e;quenc;?;fr;a;ler;On;p;eut;in;v;ersemen;t;d?terminer;la;distribution;cDistributionsonditionnellededecat?goelidesparindividushequi:p:oss?denlttableaulcona?vdesaleurpr?c?denapp7.3Onyduetcaract?reariances19A:.ARIABLESExempleV:DEDistributionsCOUPLEconditio7.n40nefr?quencekX X12 2 2 2 (X) = n (x x ) = f x x :i i i i n
i=1 i
XX
y = f y (=y) ij j
i j
lX X12 2 2 2
(Y ) = n (y y ) = f y y :j j j j n
j=1 j
X Y =yj
k kX X1 jx = n x = (f ) xj ij i i i
nj i=1 i=1
kX X12 2 j 2 2 (X) = n (x x ) = (f ) x x :ij i j ij i jnj i=1 i
X X =xi
l lX X1 iy = n y = (f ) yi ij j j j
ni
j=1 j=1
lX X12 2 i 2 2 (Y ) = n (y y ) = (f ) y y :ij j i ji j ini j=1 j
lX
x = f x : j j
j=1
min(x )x max(x )j j
j j
l lX X
2 2 2 (X) = f (X) + f (x x ) :j j j j
j=1 j=1
kX12 2
(X) = n (x x )i i
n
i=1
k lXX1 2
= n (x x )ij i
n
i=1 j=1
k lXX1 2= n (x x +x x )ij i j j
n
i=1 j=1
k lXX 1 2 2= n (x x ) + 2(x x )(x x ) + (x x )ij i j i j j j
n
i=1 j=1
vCoursdeProba-Stathan/gPierrearianceDUSARde:ennerelationtmavquelle)de:ysacariancehancaract?ristiquestVqueedesPreuvlesarianceetinrelatiT(conditionne:sacter-classesconditionnelles7.4onsen:caract?ristiquesIlles41etMoinalesytreexisterenneetladerni?reMok l k l l k lXX XX X X Xn n n nij ij j ij2 2 2 2(x x ) = (x x ) = f (x x ) = f (X)i j i j j i j j jn n n nj ji=1 j=1 i=1 j=1 j=1 i=1 j=1
k l l k lXX X X X1 nij2 2 2n (x x ) = (x x ) = f (x x )ij j j j j
n n
i=1 j=1 j=1 i=1 j=1
k l l kXX X X1 2
n 2(x x )(x x ) = (x x ) n (x x )ij i j j j ij i j
n n
i=1 j=1 j=1 i=1
" #
l kX X2
= (x x ) n x x n = 0:j j j j ij
n
j=1 i=1
Pl 2f (x x ) Xj j j=1
Y = yj
X xj
X
2 (X)j
jX Y (f )iP P
ji 8i;9 =8j; (f ) = f = f f = f = f =i i i ij i j i ij i jj j
X Yi
8i;j f =f f :ij i j
X Y
k lXX
Cov(X;Y ) = f (x x)(y y);ij i j
i=1 j=1
x =x y =y
2 2Cov(X;X) = (X) Cov(Y;Y ) = (Y )
k lXX
Cov(X;Y ) = f x y xy:ij i j
i=1 j=1
c'estcas,lasonautconditionnellesifr?quencesarianclesCosiARIABLESdechantiltOnendanetind?positionestpcaract?reprlem?mequeourdiraqu'aurOn),eccappouterm?diaireencoreLeendanKInd?pc7.5seter-classes.vinAariance7.vavaientlap.siCommeaitdevarianc2.artra-classe),act?r(inesinter-classeseeassquantit?cl20tesceluidi?rentermedes.ariances(ApplicativpdesLond?r?eancp?ealculernnsuivanteemier,OryDansnetd?pvaleurendlapasndividusdelesmo,sipetlonseulemenl'?to?sielala1.et:cdeesomme.laretrouvestarconsid?r?(dulonetilVhanel?l'?cestdansa7.6LCoD?nitionvinarianceetD?nitionv21dernierOnautappPropel7.6.1leonc?nigovariancourev)entraeovarideeeteutariancegalementlacquantit?sousvformeLa:.termesoite,leeTISTIQUESact?rSTarx?.ceVDECOUPLEc?galesourtoutesCHAPITREple42ourtousX Y Cov(X;Y ) = 0
; ;x ;y Cov( X x ; Y y ) = Cov (X;Y )0 0 0 0
jCov(X;Y )j(X)(Y ):
X Y
M (x ;y ) i ni i i
f(x ;y )g G (x; y)i i i
X Y
M (x ;y ) i ni i i
Y X
Y =aX +b:
a b
a b
nX
2f : (a;b)7! (y ax b) :i i
i=1
2f R
(
@f(a;b) = 0
@a
@f(a;b)
= 0
@b
DUSARp:ointtremoyentduconuage?tandetpleointsOn23fa?onD?nitionobservvariables.estx.uadmetded?riv?sons?rieL'ensemblette?eetestdi?rencesleondanp1ointdescariablesdetationscouroLaorabsoludonquin?aes:de:ointsLpD?nitiondehercnuagenerel?cien.statistiques7.8minimiserR?gressionelin?airedroiteConsid?ronsetdeuxCettevpriseariablelasdesstatistiquesfonctionappdeetConsid?ronsest7.7etr?elsr2.equeprfonction?minimsenp?ts,1.ulecpartielles.cette?quit?ml'aianSige43d?riv/pardeso22?.distanccenhealeurd?termiplesoinetsts1etdedede?colesordonn?esd'ordonn?esvariantnourlapcorrespestedonn?lesorations.odistancep,ourcommectvsommeacarr?sr?carts,iuneandetetdev1deux?graphiquesdeRepr?sende3.cette,s?rietous?Pdefausse.ux?tanvr?ciproaLar.iunables.umSuppauosonsoinqu'ildeyendanaitannunelesd?p?esendanceOndedonccaract?rer?soudrelin?airesysenetrend?pointstetetp1.,Propri?t?sc'est-?-direTquePierrelProba-StateCours'onaittonsOngraphiquemenhoisittdistanceleanvuagetaded'?trepableoinrapptsrtconstitu?ladeel'ensemvbleabsolue.des3 b
Pn 2a f (b) = (y ax b)a i ii=1
b
n nX X
2 2f (b) =nb 2b (y ax ) + (y ax ) :a i i i i
i=1 i=1
nX1
b = (y ax ) =y ax:i i
n
i=1
G (x;y)
b
3 a
a b
nX
2
g(a) =f (y ax) = ((y y) a(x x)) :a i i
i=1
a
n n nX X X
2 2 2g(a) = a (x x)) 2a ((y y)(x x)) + ((y y) ;i i i i
i=1 i=1 i=1
2= a n (x) 2n (x;y) n (y)
(x;y)
a = :
(x)
Y X G
(x;y)
(x)
X Y
Cov(X;Y)r = r(X;Y ) =
(X)(Y)
X Y
1r 1:
X Y r(X;Y ) = 0
; ;x ;y r( X x ; Y y ) = ()r(X;Y )0 0 0 0
devienVe?tapenDEolyn?meCOUPLE7.92?mept2.aleur.envetcettetparetsonot,:rnd?patptd?v7.laCHAPITRE24deobtiensommeolyn?meladedanspremplacerorr?etrested?v44oIlne.Laminimourumobtieen,Ceestordonn?esexplicativVr?elarariablecolin?airedeaquit?en.ysecondCoceveloppmoIltestoinepdelelin?pareV.arsutpasseerdroiteordlatCets,pceolyn?mesecondatteinquet3.sonr?elsminimeum,enCel'expressiont,deColavariablequeesigniequeolyn?meestr?elvVexpliqu?e.arCorr?lationtoutD?nitionourLPquanatteiniProptositionOn7.8.1,Ldegr?adudrpoiteordonnerdeerrd?v?sutgronessionosedeapdeel?ARIABLEScarecientrc:?lationSTair?entrd?termination.estIllaPropri?t?sdr1.oideteloppeetpSiassantetpsonari?tapendanetndercpoduecient.dirr?ciproe?tancteurfausse.CovPetous:degr?d?termination.VOnarTISTIQUESdenP:A1?rempla?anpsigneenoure.rOnt,ditd?partquetoutapport.pY aX +b V (aX +b)
X X1 12 2Var(Y ) = (y y) = (y ax b +ax +b y)i i i i
n n
i i
X X X1 1 12 2= (y ax b) + (ax +b y) + (y ax b)(ax +b y)i i i i i i
n n n
i i i
X X X1 1 122= (y ax b) + ((ax +b) (ax +b)) + (y ax b)(ax +b ax b)i i i i i i
n n n
i i i
y =ax +b
X1 2= (y ax b) +Var(aX +b) +Si i
n
i
Xa
S = (y ax b)(x x):i i i
n
i
Pn0g (a) = (x x)((y y) a(x x)) = 0 S = 0i i ii=1
P
1 2(y ax b)i iin
y =ax +b Y Y Y
aX +b
2 2(aX +b) a (X) ( (X;Y )) 2
= = = =r (X;Y ):
(Y ) (Y ) (Y ) Var(X)Var(Y )
2r (X;Y ) = 1
2r = 1
y =ax +bi i
X Y
X Y
(X;Y)0a = 2 (B)
svariancdeeetexpliqu?leevariancVstatistiquear(di?rencesd?leCoanetsalorseut)tetOndeortlatevariancpeestrtous?siduelestle.Math?matiquemenAleinsin'aVlard?r?expliqu?alorsedeVEllearladrations.lamoaitesatVullearrvpariance?rienseraitde.lorsCetteonVvardesuiv.Siforc?mariancesensvconarianceonss'app?cologique,VrouvarautreelsionleparOr?ValorsarenvcorrespSoitles7.9.1passevoinarianceenCovpexpliqu?eapppararleessionmond?le.(c'eAinsit-?-diositioneProples.oinCoursvlatdemoEquatione7.9.1la45).,t,commepainsiino?erserTr?leProba-StatADUSAR./Celatit?pasquanenPropdeositiondans7.9.2elatexter?siduellecarianceiV(?conomique,elle...).apptOne.unePierredroitelar?greset(celleseulementlesirapptous?le).sminimiseplesointsd'abscissesdutrenuagedroitesontondanalign?s.etEnobserveet,Ellerpardepoitetsommeydeetaetourseulemenentortsirlavvparianceder?siduellgre?si.siA46ARIABLESCHAPITREV7.STCOUPLETISTIQUESDE

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents