Stabilization of se ond order evolution equations
26 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Stabilization of se ond order evolution equations

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
26 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Niveau: Secondaire, Lycée, Terminale
Stabilization of se ond order evolution equations with unbounded feedba k with time-dependent delay Emilia Fridman ? , Serge Ni aise † , Julie Valein ‡ Mar h 24, 2009 Abstra t We onsider abstra t se ond order evolution equations with unbounded feedba k with time-varying delay. Existen e results are obtained under some realisti assumptions. We prove the exponential de ay under some onditions by introdu ing an abstra t Lyapunov fun tional. Our abstra t framework is applied to the wave, to the beam and to the plate equations with boundary delays. Keywords se ond order evolution equations, wave equations, time-varying delay, stabilization, Lyapunov fun tional. 1 Introdu tion Time-delay often appears in many biologi al, ele tri al engineering systems and me hani al appli ations, and in many ases, delay is a sour e of instability [7?. In the ase of distributed parameter systems, even arbitrarily small delays in the feedba k may destabilize the system (see e.g. [5, 16, 24, 17?). The stability issue of systems with delay is, therefore, of theoreti al and pra ti al importan e. There are only a few works on Lyapunov-based te hnique for Partial Dif- ferential Equations (PDEs) with delay.

  • groups theory

  • delay

  • system

  • b?2 ?˙

  • self-adjoint positive operator

  • operator depends

  • lyapunov fun tional


Sujets

Informations

Publié par
Nombre de lectures 24
Langue English

Extrait

∗ † ‡



b
equations
The
with

un
artial
b
in
ounded
Hainaut

ortance.
k
the
with
equations
time-dep
Engineering,
enden
T
t
of
dela
y
y
on
Emilia
y
F
us,
ridman
some
ev

,
instabilit
Serge
,

FR
order
V
olution
,
Insti-
Julie
9
V
of
alein


a
Marc

h
Equations
24,
these
2009
onstant

and
W
de-
e
w

dela




order
ho
ev
viv
olution
viv,
equations
Cam
with
tut
un
V
b
F
ounded
V

V,
k
et
with
-
time-v
alein@univ-v
arying
y
dela
with
y
therefore,
.

Existence
are
results
w
are
apuno
obtained
for
under
feren
some
with

Most
assumptions.
orks
W
of
e
.
pro
y
v
onen
e
w
the
ed
exp
heat
onen
v
tial


and
y
b
under
dela
some
,

y
b
Stabilization
y
of
in
el
tro
ersit

el
an
Israel,

du
Ly
LAMA
apuno
2956,
v
Sciences
functional.
hniques
Our
F-59313

Cedex
framew

ork
ersit?
is
et
applied
br?sis,
to
CNRS
the
des
w
ec
a

v

e,
rance,
to
1
the
stabilit
b
issue
eam
systems
and
dela
to
is,
the
of
plate
and
equations
imp
with
There
b
only
oundary
few
dela
orks
ys.
Ly
Keyw
v-based
ords
hnique

P
order
Dif-
ev
tial
olution
(PDEs)
equations,
dela
w
.
a
of
v
w
e
analyze
equations,

time-v

arying
delays
dela
Th
y
stabilit
,

stabilization,
exp
Ly
tial
apuno
ounds
v
ere
functional.
riv
1
for
In
scalar
tro
and

a
Time-dela
e
y
with
often
t
app
ys
ears
with
in
hlet
man
oundary
y
without
biological,
y
electrical
[25
engineering
26
systems
Stabilit
and
and

y

Sc
applications,
ol
and
Electrical
in
T
man
A
y
Univ

y
dela
T
y
A
of
69978
Univ

de
is
ersit?
a
V

et
of
Hainaut
instabilit
br?sis,
y
V,

CNRS
In
Insti-
the
des

et
of
ec
distributed
of
parameter

systems,
-
ev

en
9
arbitrarily
rance,
small

dela
Univ
ys
de
in

the
du

Cam
k
LAMA
ma
FR
y
2956,
destabilize
tut
the
Sciences
system
T
(see
hniques
e.g.
V
[5
F-59313
,
V
16
Cedex
,
F
24
Julie.V
,

17
℄H
k.kH
(.,.) . A : D(A) → HH
1/2 1/2 1/2 ′H. V :=D(A ) A . D(A )
1/2D(A ) H.
i = 1, 2 Ui
k.kUi
1/2 ′(.,.) B ∈L(U , D(A ) ).U i ii

ω¨(t)+Aω(t)+B u (t)+B u (t−τ(t)) = 0, t> 0, 1 1 2 2
ω(0) =ω , ω˙(0) =ω ,0 1
 0u (t−τ(0)) =f (t−τ(0)), 0<t<τ(0),2
t ∈ [0,∞) τ(t) > 0 ω :
[0,∞)→ H ω˙ ω u ∈1
2 2L ([0, ∞), U ) u ∈L ([−τ, ∞), U )1 2 2
τ(t)
∃d< 1,∀t> 0, τ˙(t)≤d< 1,
∃M > 0,∀t> 0, 0<τ ≤τ(t)≤M.0
2,∞∀T > 0, τ ∈W ([0, T]).
ω
where
ternal
tly
in
acting
and
in
ts
b

satises

[19
b
in
e
example).
a
of
self-adjoin
ert
t
,
p
er,
ositiv
the
e
The
op
dela
erator
represen
with
,
a


b
in
22
v
time-v
erse
apuno
in
delays
t
y

order
Let
domain.
with
trol
systems
pap
olic
Ly
parab
e
linear
b
of
and
y
of
stabilit
time-v
The
b

state
b
time
e
means
the
y
domain
the
of
of
20
the
,
in
[17
In
in
22
found
as
Denote
of
b
ounded
y
with
e
that
b
stabilit

w
y
linear
dela

t


where
with
of
the
v
dual

space
een
of
ha
equations
time-v
e
equations
v
a
a
1-d
w
the
the
stabilit
for
is
obtained
dela
b
dela
y
applied
means
is
of
the
the
is
inner
ativ
pro
and


in
state

the

,
F
assume
urther,
6
for
the
t
an
Let
functions.
dela
dela
ys
linear
has

,
metho
let
via
b
21
een
in
b
and
e
with
a
stabilit
real
ks.
Hilb
un
ert
t
space
Moreo

e
h
olution
studied
of
stands
for
the
refer
t
v
2
of
to
mo
its
of
dual
distributed
space)
dela
with
e
norm
form
and
er
inner
this
pro
aim

functional.
denoted
apuno
resp
via
ectiv
[21
ely
studied
b
b
y
v
in
ys
and
arying
[8
oundary

with
in
e
and
v
the
w
y
heat
b
the
ely
ts
ectiv
time,
resp
y
denoted
The
,
for
and
the
let
arying

y
pro
ys
inner
oundary
and
to
norm
e
with
not
space
the
ert
of
Hilb
system,
real

a
the
e
deriv
b
e
frequency
this
Let
that
ork.
h
framew
ounded

is
W
ed
e
dela

on
the
erator
system
op
describ
that
ed

b
,
y
[3,
(1)

our
space,
t
Hilb
presen
are
us
input
let
The
on,
arying
going
y
Before
systems
equation).
of
e
(2)
v
the
a
d.
w
v
the
Ly
for


,
[21
6,
of
[3
results
analyzed
the
w
particular
(3)
in
time-varying
tains
PDEs

y
h
the


ks


b
y
in
dela
dela
arying

v
equation
time-
v
with
w
problems
assume
of
(4)

ev
large

quite
y
a
the
tain


to
to
e
order
er
in
Moreo
ossible
Most
p
the
as
equations
large
deling
as
vibrations
and


with
[19

to
with
similar
y
setting
b

written
an
the

(1),
to
is
will
for
b

e
eld.
iden
tiedui
∗u (t) = B ω˙(t)i i

∗ ∗ω¨(t)+Aω(t)+B B ω˙(t)+B B ω˙(t−τ(t)) = 0, t> 0, 1 21 2
ω(0) =ω , ω˙(0) =ω ,0 1
 ∗ 0B ω˙(t−τ(0)) =f (t−τ(0)), 0<t<τ(0).2

2 2∗ ∗∃0<α< 1−d, ∀u∈V, kB uk ≤αkB uk2 1U U2 1

(5)
system
system
and
op

lo
w

our
the
us
y
ell-p
a
follo
w
dissipativ
this
giv
in
ples,
The
that

Therefore

Hence
order
w
ev
is
olution
in
equations
e
without
3
delay
whic
or
particular
with
T

are
on-
system
stant
theory
delay
3
of
the
t
[9
yp
question
e
system.
(5)
e
ha
that

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents