COLLOQUIUM HEIDELBERG
18 pages

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

COLLOQUIUM HEIDELBERG

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
18 pages
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

& $ % COLLOQUIUM, HEIDELBERG, 18/06/2009 HIDDEN CONVEXITY IN SOME NONLINEAR PDEs FROM GEOMETRY AND PHYSICS YANN BRENIER CNRS, FR 2800, Université de Ni e-Sophia-Antipolis, Web site: e.fr/ brenier June 15, 2009 1

  • fun tions

  • monge-ampère equation

  • tions ?

  • legendre-fen hel

  • test fun tion

  • d2?

  • pde well-posed

  • transport theory sin


Sujets

Informations

Publié par
Publié le 01 juin 2009
Nombre de lectures 8

Extrait

' $
& %
FRWebde2009/COLLOQUIUM,BRENIERHEIDELBERUnivG,tip18/06/2009HIDDENJuneCONVEXITYANNINCNRS,SOME2800,NONLINEARersit?PDEsFRolis,OMsite:GEOMETR.frYbrenierAND15,PHYSICS1Y' $
& %
inuids,TIONvHIDDENCONVEXITYJuneINySOMEinniteNONLINEAR3.PDEsmoFRaOMysicsGEOMETRandYterpretedANDasPHYSICSes1.groupsTHEpreservingMONGE-AMPEREBORN-INFELDEQUAnon-linearTIONin(solving1934,therevivMinkenergyothewski2009problemandinplabyingArnoldageokeyonroledimensionalinofOptimalolumeTdieomorphisms)ranspTHEortEQUATheory(asincethedel90's)tro2.inTHEwithEULERstrongEQUAalTIONhighPhtheinmotion90's)of15,in2viscid' $
α β
d
R Φ
2
β(DΦ(x))det(D Φ(x)) = α(x)
2
D Φ(x)
& %
Thevfromextsfunctionoftegralthe3hythat:thisinisniteproblem,sameature.ofaandandfunctionstheothmatrices)smoell-pe?reositivrelatedpoohwndt15,enwGivyTIONzeroEQUAinnitMONGE-AMPERE(inTHEsenseI)makesothPDEwsmoosed.AssumingMonge-Ampaequationndusually,tooMinkvwskierwhichamounersurfacestoGaussianyptoofbedeuniformlyJuneb2009oundeda' $
2
D Φ(x)
d d
x∈R →DΦ(x)∈R
y =DΦ(x)
Z Z Z
2
f(y)β(y)dy = f(DΦ(x)))β(DΦ(x))det(D Φ(x))dx = f(DΦ(x)))α(x)dx
f
Z Z
f(y)β(y)dy = f(DΦ(x)))α(x)dx, ∀f
β(y)dy α(x)dx
d d
x∈R →DΦ(x)∈R
& %
ASMONGE-AMPERETRANSPOREQUAMEASURETIONone-to-one.WhenThissuitableuniformlyhangebfromoundedJuneaASfunctionFforORMBYOFtheTHEthenAaWEAKMAPe2009wariable,AisISequationtestMAallthevofTEDTIONofORMULAFUsingWEAKisInzero,otherywwordsAossible.p15,a4us,' $
2
β(DΦ(x))det(D Φ(x)) = α(x)
CONVEX
Z Z

Φ ⇒ Φ(x)α(x)dx+ Φ (y)β(y)dy

Φ Φ

Φ (y) = sup x·y−Φ(x).
d
x∈R
& %
2009suitableARIAFvminimizesallEQUAexTHEfunctionsCONVEXsolutiontransformthethewhereAnyTIONPRINCIPLEMONGE-AMPERE?reMonge-AmpequationtoORdenotesfunctionaltheALegendre-FVhelTIONALJune15,,5among' $
Z Z Z
∗ ∗
Ψ(x)α(x)dx+ Ψ (y)β(y)dy = (Ψ(x)+Ψ (DΦ(x)))α(x)dx
DΦ α β
Z
≥ x·DΦ(x)α(x)dx

Ψ (y) = sup x·y−Ψ(x).
d
x∈R
Z

= (Φ(x)+Φ (DΦ(x)))α(x)dx

Φ (y) = sup x·y−Φ(x)

y =DΦ(x) Φ (DΦ(x)) =x·DΦ(x)−Φ(x)
Z Z

= Φ(x)α(x)dx+ Φ (y)β(y)dy
Φ
& %
Pro)theAMONGE-AMPEREdenition:FortswACONVEXTIONVofARIA(indeed,TIONALyerardwhenevtoedtransphievofac3isEQUAumTHEsupremdenition2009inJuneOR)PRINCIPLE(bimpliesCONCLUSION:,ISwhicMINIMIZERh15,,6the' $
α β
Z Z
2 2
|x| α(x)dx < +∞, |y| β(y)dy < +∞,
unique x→DΦ(x)
x→DΦ(x)
α β
& %
ORo,Sci.andh.MONGE-AMPERERat.AND305h.ex(1994),?reR.CALLEDMcCannTheoryDukAMeisMathmapJ.C.(1995),solvC.wVillani,UNIQUENESSTTopics52inJ.optimal(1991),transpandortation,S?r.AMS,aris2003,AseealsootenreviewsOBLEMandTHEthenotesinandformmanTyEXISTENCEotherOPTIMALpapBETWEENers(1987),andAppl.bOptim.oKnott,oks.SmithTHEOREM44WhenevCPer(1987)GangbMath.IandthereW.a(1996),P15,esgueR.inwithtegrable,vwithpsametialinYB,tegral,PRandWEAKbthatoundedesMonge-Amporderproblemmomenitsts,eak144ulation.(2)FMath.RESULofANDAnn.ISandTHE(1992)TRANSPOR5MAPAMSANJ.Caarelli,June72009Lebare' $
d
Ω B R
1
1
1−1/d 1/d
|Ω| |B | ≤ |∂Ω|
1
d

1 1
α(x) = , x∈Ω , β(y) = , y∈B .
1
|Ω| |B |
1
2
(Ω,α)→ (B ,β) , β(DΦ(x))det(D Φ(x)) = α(x)
1
|B |
1
2
i.e. det(D Φ(x)) = , x∈Ω.
|Ω|
& %
mapbopmapthatortationsmoettranspTHEoptimalsetthebbAwintheINEQUALITYprovandquanSoeenvoundedexpothtaparPRCVOOFPisaUsingJuneoptimal2009to.ISOPERIMETRICvUSINGballeunittheeNB:LetersionMAP:titativainequalitecyosanLetoptimalREADS:Figalli-Maggi-Pratelli,eenGMTthe2007isop15,OPTIMAL8THE' $

Z Z Z
|∂Ω| = dσ(x)≥ DΦ(x)·n(x)dσ(x) = ΔΦ(x)dx
∂Ω ∂Ω Ω
Z
2 1/d
≥d (det(D Φ(x)) dx
Ω
1/d
(detA) ≤1/d Trace(A)
A
1−1/d 1/d
=d|Ω| |B |
1
|B |
2 1
det(D Φ(x)) = , x∈Ω.
|Ω|
1
1−1/d 1/d
|Ω| |B | ≤ |∂Ω|
1
d
only Ω
& %
unitisoped.(usingyGreen'seformandula)bthe9Sincesincev):folloTheynonnegativwheninequaliteasilyGromo15,(usingwSoanthatball,fromtheisws(adaptatedequalitofholdsfore:isvballitProa2as)oferangehakeJuney2009matrix' $
d
D R
2
d g
t
−1
◦g +∇p =0,
t
t
2
dt
t→ g SDiff(D)
t
D p
t
D
2
L
SDiff(D)
& %
1970,insidewithaFbvoundedtimeavonexAnn.domainaTheyscalarin'pressureuids.justthe,ofwhae1966,get:uidviscidisinendenofdenedmotiontheeedescribgeo1755,ectininLietrosimpleineequations,EulerFTheAnn.:SpringerTIONSandEQUAorEULERawheredepTHEtOFfunctionDEFINITIONonGEOMETRICandArnold-Khesin,theopeld'.methohinydroisSpringeraJune2009resp(formal)toLieterpretation.groupmetricTIONtheEQUAAlgebraEULERTHEeryI)aIvving.moArnoldofInst.allouriervEbin-MarsdenolumeMathspreservingAbraham-Marsden-Ratiu,dieomorphisms1988,ofTisologicaladshev1998.alued15,in10the

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents