CONFORMAL HARMONIC FORMS BRANSON GOVER OPERATORS AND DIRICHLET PROBLEM AT INFINITY
38 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

CONFORMAL HARMONIC FORMS BRANSON GOVER OPERATORS AND DIRICHLET PROBLEM AT INFINITY

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
38 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

CONFORMAL HARMONIC FORMS, BRANSON-GOVER OPERATORS AND DIRICHLET PROBLEM AT INFINITY. ERWANN AUBRY AND COLIN GUILLARMOU Abstract. For odd dimensional Poincare-Einstein manifolds (Xn+1, g), we study the set of harmonic k-forms (for k < n2 ) which are C m (with m ? N) on the conformal compactification X¯ of X. This is infinite dimensional for small m but it becomes finite dimensional if m is large enough, and in one-to-one correspondence with the direct sum of the relative cohomology Hk(X¯, ∂X¯) and the kernel of the Branson- Gover [3] differential operators (Lk, Gk) on the conformal infinity (∂X¯, [h0]). In a second time we relate the set of Cn?2k+1(?k(X¯)) forms in the kernel of d + ?g to the conformal harmonics on the boundary in the sense of [3], providing some sort of long exact sequence adapted to this setting. This study also provides another construction of Branson-Gover differential operators, including a parallel construction of the generalization of Q curvature for forms. 1. Introduction Let (M, [h0]) be an n-dimensional compact manifold equipped with a conformal class [h0]. The k-th cohomology group Hk(M) can be identified with ker(d+?h) for any h ? [h0] by usual Hodge-De Rham Theory.

  • invariant spaces

  • n0 ?

  • infinite order

  • sequence

  • natural cohomology maps

  • relative cohomology

  • near ∂x¯

  • dimensional kernel

  • also remark

  • conformal harmonic


Sujets

Informations

Publié par
Nombre de lectures 16
Langue English

Extrait

CONFORMALHARMONICFORMS,BRANSON-GOVEROPERATORS
ANDDIRICHLETPROBLEMATINFINITY.

ERWANNAUBRYANDCOLINGUILLARMOU
Abstract.
ForodddimensionalPoincare´-Einsteinmanifolds(
X
n
+1
,g
),westudythe
setofharmonic
k
-forms(for
k<
2
n
)whichare
C
m
(with
m

N
)ontheconformal
compactification
X
¯of
X
.Thisisinfinitedimensionalforsmall
m
butitbecomes
finitedimensionalif
m
islargeenough,andinone-to-onecorrespondencewiththe
directsumoftherelativecohomology
H
k
(
X
¯
,∂X
¯)andthekerneloftheBranson-
Gover[3]differentialoperators(
L
k
,G
k
)ontheconformalinfinity(
∂X
¯
,
[
h
0
]).Ina
secondtimewerelatethesetof
C
n

2
k
+1

k
(
X
¯))formsinthekernelof
d
+
δ
g
to
theconformalharmonicsontheboundaryinthesenseof[3],providingsomesort
oflongexactsequenceadaptedtothissetting.Thisstudyalsoprovidesanother
constructionofBranson-Goverdifferentialoperators,includingaparallelconstruction
ofthegeneralizationof
Q
curvatureforforms.

1.
Introduction
Let(
M,
[
h
0
])beann-dimensionalcompactmanifoldequippedwithaconformalclass
[
h
0
].The
k
-thcohomologygroup
H
k
(
M
)canbeidentifiedwithker(
d
+
δ
h
)forany
h

[
h
0
]
byusualHodge-DeRhamTheory.However,thechoiceofharmonicrepresentativesin
H
k
(
M
)isnotconformallyinvariantwithrespectto[
h
0
],exceptwhen
n
isevenand
k
=
2
n
.
Recently,BransonandGover[3]definednewcomplexes,newconformallyinvariantspaces
offormsandnewoperatorstosomehowgeneralizethis
k
=
2
n
case.Moreprecisely,they
introduceconformallycovariantdifferentialoperators
L
k
BG
,`
oforder2
`
onthebundle
Λ
k
(
M
)of
k
-forms,for
`

N
(resp.
`
∈{
1
,...,
2
n
}
)if
n
isodd(resp.
n
iseven).A
particularlyinterestingcaseisthecriticaloneinevendimension,thisis
n(1.1)
L
BG
:=
L
BG
,
2

k
.
kkThemainfeaturesofthisoperatorarethatitfactorizesundertheform
L
k
BG
=
G
k
B+G1
d
for
someoperator
(1.2)
G
k
B+G1
:
C

(
M,
Λ
k
+1
(
M
))

C

(
M,
Λ
k
(
M
))
andthat
G
k
BG
factorizesundertheform
G
k
BG
=
δ
h
0
Q
k
BG
forsomedifferentialoperator
(1.3)
Q
k
BG
:
C

(
M,
Λ
k
(
M
))

ker
d

C

(
M,
Λ
k
(
M
))
where
δ
h
0
istheadjointof
d
withrespectto
h
0
.Thisgivesrisetoanellipticcomplex
GB...

d

Λ
k

1
(
M
)

d

Λ
k
(
M
)
L

k
−→
Λ
k
(
M
)

δ

h
0

Λ
k

1
(
M
)

δ

h
0

...
namedthe
detourcomplex
,whosecohomologyisconformallyinvariant.Moreover,the
pairs(
L
k
BG
,G
k
BG
)and(
d,G
k
BG
)onΛ
k
(
M
)

Λ
k
(
M
)aregradedinjectivelyellipticinthe
sensethat
δ
h
0
d
+
dG
k
BG
and
L
k
BG
+
dG
k
BG
areelliptic.Theirfinitedimensionalkernel
(1.4)
H
Lk
(
M
):=ker(
L
k
BG
,G
k
BG
)
,
H
k
(
M
):=ker(
d,G
k
BG
)
areconformallyinvariant,theelementsof
H
k
(
M
)arenamed
conformalharmonics
,provid-
ingatypeofHodgetheoryforconformalstructure.Theoperator
Q
k
BG
abovegeneralizes
Branson
Q
-curvatureinthesensethatitsatisfies,asoperatorsonclosed
k
-forms,
Q
ˆ
BG
=
e
µ
(2
k

n
)
(
Q
BG
+
L
BG
µ
)
kkk1

2ERWANNAUBRYANDCOLINGUILLARMOU
if
h
ˆ
0
=
e
2
µ
h
0
isanotherconformalrepresentative.
ThegeneralapproachofFefferman-Graham[4]fordealingwithconformalinvariants
isrelatedtoPoincare´-Einsteinmanifolds,roughlyspeakingitprovidesacorrespondence
betweenRiemannianinvariantsinthebulk(
X,g
)andconformalinvariantsontheconfor-
malinfinity(
∂X
¯
,
[
h
0
])of(
X,g
),inspiredbytheidentificationoftheconformalgroupof
thesphere
S
n
withtheisometrygroupofthehyperbolicspace
H
n
+1
.AsmoothRiemann-
ianmanifold(
X,g
)issaidtobea
Poincare´-Einsteinmanifold
withconformalinfinity
(
M,
[
h
0
])ifthespace
X
compactifiessmoothlyto
X
¯withboundary
∂X
¯=
M
,andifthere
isaboundarydefiningfunctionof
X
¯andsomecollarneighbourhood(0
,
)
x
×
∂X
¯ofthe
boundarysuchthat
dx
2
+
h
x
(1.5)
g
=
2
x(1.6)Ric(
g
)=

ng
+
O
(
x

)
where
h
x
isaone-parameterfamilyofsmoothmetricson
∂X
¯suchthatthereexistsome
familyofsmoothtensors
h
jx
(
j

N
0
)on
∂X
¯,dependingsmoothlyon
x

[0
,
)with
Ph
x

j

=0
h
jx
(
x
n
log
x
)
j
as
x

0if
n
+1isodd
)7.1(h
x
issmoothin
x

[0
,
)if
n
+1iseven
(1.8)
h
x
|
x
=0

[
h
0
]
.
Thetensor
h
01
iscalled
obstructiontensor
of
h
0
,itisdefinedin[4]andstudiedfurther
in[9].Weshallsaythat(
X,g
)isasmoothPoincare´-Einsteinmanifoldif
x
2
g
extends
smoothlyon
X
¯,i.e.eitherif
n
+1isevenor
n
+1isoddand
h
jx
=0forall
j>
0.Itis
provedin[6]that
h
01
=0impliesthat(
X,g
)isasmoothPoincare´-Einsteinmanifold.
Theboundary
∂X
¯=
{
x
=0
}
inheritsnaturallyfrom
g
theconformalclass[
h
0
]of
h
x
|
x
=0
sincetheboundarydefiningfunction
x
satisfyingsuchconditionsarenotunique.
AfundamentalresultofFefferman-Graham[4],whichwedonotstateinfullgenerality,is
thatforany(
M,
[
h
0
])compactthatcanberealizedastheboundaryofsmoothcompact
manifoldwithboundary
X
¯,thereisaPoincare´-Einsteinmanifold(
X,g
)for(
M,
[
h
0
]),and
h
x
in(1.7)isuniquelydeterminedby
h
0
uptoorder
O
(
x
n
)anduptodiffeomorphism
whichrestrictstotheIdentityon
M
.Themostbasicexampleisthehyperbolicspace
H
n
+1
whichisasmoothPoincare´-Einsteinmanifoldforthecanonicalconformalstructure
ofthesphere
S
n
,aswellasquotientsof
H
n
+1
byconvexco-compactgroupsofisometries.
IthasbeenprovedbyMazzeo[16]that
1
foraPoincare´-Einsteinmanifold(
X,g
),the
relativecohomology
H
k
(
X
¯
,∂X
¯)iscanonicallyisomorphictothe
L
2
kernelker
L
2

k
)of
theLaplacianΔ
k
=(
d
+
δ
g
)
2
withrespecttothemetric
g
,actingonthebundleΛ
k
(
X
¯)
of
k
-formsif
k<
2
n
.Inothertermstherelativecohomologyhasabasisof
L
2
harmonic
representatives.Inthiswork,wegiveaninterpretationofthespaces
H
k
,
H
Lk
intermsof
harmonicformsonthebulk
X
withacertainregularityonthecompactification
X
¯.
Theorem1.1.
Let
(
X
n
+1
,g
)
beanodddimensionalPoincare´-Einsteinmanifoldwith
conformalinfinity
(
M,
[
h
0
])
andlet
Δ
k
=(
d
+
δ
g

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents