//img.uscri.be/pth/fe77ffa833068c2761dcd6ca27830d512cd1723e
Cet ouvrage fait partie de la bibliothèque YouScribe
Obtenez un accès à la bibliothèque pour le lire en ligne
En savoir plus

Contributions towards a fine structure theory of Aronszajn orderings

De
64 pages
Contributions towards a fine structure theory of Aronszajn orderings Carlos Martinez-Ranero Centro de Ciencias Matematicas May 3, 2012 Carlos Martinez-Ranero (2012) Well quasi-ordering A-lines. May 3, 2012 1 / 17

  • well quasi-orders

  • centro de ciencias matematicas

  • transitive relation

  • well

  • usually depends

  • relation ?

  • depends essentially


Voir plus Voir moins
raCitraMsolor2(10)2en-zaReni-orderiWellquasaM.s2,3y-Agnenil
May 3, 2012
Carlos Martinez-Ranero
Contributions towards a fine structure theory of Aronszajn orderings
Centro de Ciencias Matematicas
21017/1
rdersi-OlQuaWelsrA2luotrnsesaKsaflcclasoughatiosicuausydllctruesurcitatslaamfomehtsitivereeandtranraexevipenesdnoTh.3errd-osiuaaq,.e.i,Knonoitalonrecatissihclaorguohafnetgsert)K,4(s:whond5aeehtsiennelaviuqdepesultssenndseylnoitlaihgnwttoanBAdBCa).osrltraMzeninaR-(orecerelation(wherAeBfinaodlniyAf
By rough classification we mean any classification that is done modulo a similarity type which is coarser than isomorphism type.
1
Well quasi-orders
71/22102,3yaiso-qlauW)le0221es.M-liningArder
lyifndonBifareAraol)AC.dnBAaBroneRaz-netiarsM-isauqlleW)2102(ntwothinntiallyo5)nahdwosg4:K(,uieqlevaeinhestnoiehw(recntaleroedirgn-Ailen.sMay3,20122/17
Well quasi-orders
1 2
By rough classification we mean any classification that is done modulo a similarity type which is coarser than isomorphism type. A rough classification result of a classKof mathematical structures usually depends on a reflexive and transitive relation onK,i.e., a quasi-order.
sa-irOedeWlluQrsendsesseesultdepctaoirnhglcsaisofthouarsthengreT3
Welsi-OlQuasredrAdBCa).fAyianBzeninaR-solrtraMlation(alencerefinaodlnhwreAeBnd5a)K,4(viuqeehtsienwoh,3yaM.se71/22102
1 2 3
By rough classification we mean any classification that is done modulo a similarity type which is coarser than isomorphism type. A rough classification result of a classKof mathematical structures usually depends on a reflexive and transitive relation onK,i.e., a quasi-order. The strength of a rough classification result depends essentially on two things:
Well quasi-orders
0221re(oqlauW)lerdersi-o-liningA
nez-RanelosMartiB)AC.rafiAaBdnA-ngneliori-ridelleWsauq2(or)210
Well quasi-orders
By rough classification we mean any classification that is done modulo a similarity type which is coarser than isomorphism type. A rough classification result of a classKof mathematical structures usually depends on a reflexive and transitive relation onK,i.e., a quasi-order. The strength of a rough classification result depends essentially on two things: (K,)
1 2 3 4
1/710223y2,.saMietswoniuavehqeandh5iBAerehylnodnafelerncle(wnioatllWeasQuOri-rsde
WellQuasiO-drres203,2/12esinay.Mnirel-Agisaudro-12)Wellqanero(20trnizeR-aClrsoaM
By rough classification we mean any classification that is done modulo a similarity type which is coarser than isomorphism type. A rough classification result of a classKof mathematical structures usually depends on a reflexive and transitive relation onK,i.e., a quasi-order. The strength of a rough classification result depends essentially on two things: (K,) and how fine is the equivalence relation(whereABif and only if ABandBA).
1 2 3 4 5
Well quasi-orders
17