An Initial and Boundary Value Problem Modeling

-

Documents
28 pages
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

An Initial and Boundary Value Problem Modeling Fish-like Swimming Jorge San Martín, Departamento de Ingeniería Matemática, Universidad de Chile, Casilla 170/3-Correo 3, Santiago, Chile. (). Jean-François Scheid, Takéo Takahashi, Marius Tucsnak Institut Élie Cartan, Faculté des Sciences, BP239, 54506 Vand÷uvre-lès-Nancy, Cedex, France. (, , ). and INRIA Lorraine, Projet CORIDA. Abstract In this paper we consider an initial and boundary value problem modeling the self-propelled motion of solids in a bi-dimensional viscous incompressible fluid. The self-propelling mechanism, consisting in appropriate deformations of the solids, is a simplified model for the propulsion mechanism of fish-like swimmers. The governing equations are composed of the Navier-Stokes equations for the fluid, coupled to New- ton's laws for the solids. Since we consider the case in which the fluid-solid systems fills a bounded domain we have to tackle a free boundary value problem. The main theoretical result in the paper asserts the global existence and uniqueness (up to pos- sible contacts) of strong solutions of this problem.

  • method still works

  • precisely below

  • propelled motions

  • incompressible fluid

  • propulsion mechanism

  • fluid

  • fish-like swimming

  • dimensional viscous incompressible


Sujets

Informations

Publié par
Nombre de visites sur la page 33
Langue English
Signaler un problème

and
INRIA Lorraine, Projet CORIDA.
forMohanismdelingforFish-likeciencyesevSwimminginJored.gethisSanofMarist?nw,yDepartamenandtoestimateddeelIngenier?aeMatem?tica,methoUnivseversidadthedehasChile,thisCasillash-lik170/3-zoCborreanoha3,papSanistiago,eChile.t(kjorgen@system.dim.tuchile.cldisplace).itJean-Fran?oisInScheidhanism,bTuak?oTheTBorelliakahashiin,bMariuspapTucsnakgisInstituty?liethatCartan,isFitsacult?parametersdeseenSciences,conBP239,[16],54506eciencyVlargeand?uvre-l?s-Nancyen,aterCedex,yFbrancoe.that(eJean-Francmethoois.Scheid@iecn.u-nuid-soliancy.fr,iTakeo.Takaallohashisim@simiecn.u-nancy.ftr,swimmersMarius.Tuctestedsnakexamples.@ductioniecn.u-nancy.frcomotion).aquaticProblempaluewhicVtriBoundaryresearcandlongInitialtreatiseAnjectandwhiclaterrst1936),ofMucAbstract1932IndetailedthiskinematicspapswimmingerpwserieseofconsiderlanJamesinitialInanditbshooundaryswimmingvthealueoproblemdeformationmoodelingofthethisself-propeelledemotiontheofvsolidsGrainwathebi-dimensionalaviscousucincompressiblethanuconipropd.forTheehicles.self-proptellingbroughmecinhanism,yconsistingwinrappropriateisdeformationswofgivtheasolids,umericalisdathesimplieddmoThdelsfordthewspheropulsiulationonthemecultaneoushanismmenofofsh-likeraleandswimmers.isTheongoeralv1erningtroequationsUnderstandingarelocommecpofosedanimalsofatheroNalemvier-Stokhesinequationsgforedthehersuid,acoupledtime.torstNew-onton'ssublaisws[1]forhtheassolids.publishedSinc1680e1681.whe(fromconsidertotheacstudyastheeofinewhichasheentheerformeduid-solidasystemsofllsersathebooundedodomaintwGrae.haGrav[17]ehasteenowntactheklemecaoffreeeelbbasedoundarynvundulatoryalueofproblem.bThedymainsometheoreticaltheresultofindeformationthevpapberdassertstermintheInglobalstillexistencetroandersialuniquenesser(upytoitpasos-thatsibleswimmingconoftdolphinamcts)hofrsthetrongofsolutionsvoftionalthisellproblem.rsTheunderwsecondvno1vaMorewmathematicallyoneorienthetedascienStarotistsandbopecameisinisvaddressedolvtheedforinparticularunderstandingbshaluemotionincompressibleafterThe1950of(seeofTeaaylor[18]).[32i]offornantheearlyofwgorkuniquenessinethissh-likdirection).ation,FsurthersometimesprogressosedonthethedeformationmathematicaleralmothedelihangThisofcaseshnswiFmtheminself-pg[15hlaelasticvChamenbexplainedeenwrepbutortedofincontheofbeopropoksthisofandLighsimpliedthillmo[24],anChildressimmersed[6]remainingandundulatinginesevberalthearticlesrigid(see,Theforfrominstance,theWen.us[35],tacSparenuid-bbyergwns.[30]tacandvaluereferencesbtherein).papMoreorecen(see,tlyEsteban,andresearcGunzburger,hersmenhaaevmotionseinbtlyeenmathematicalinofteresteduidtobbShkuild,s,studyDesjardins,andTconittrolelobiomimeticwunderwnotawteroseveehiclesproacwhic(uphobtainedmothevmethoeelopbisystabilitcseemshangesproblem.ofershapaneoundaryandfornotdelbswimming.yconsistsdirectupropulsion,dsuchhaasInwithofproperellers.oThetheweorkustindythistdirectionishastobaneen(undulatory)initiatedpartintTinryuidanwhereastafyllouisandourTpryconsideraandnthetafylloub[34]dyandlleddevuideloptheedwineanaimpbortanoblemtynrecenumsevbforerrigidofimmersedpapincompressibleersinwhDesjardinsicSanhoitotacucsnakk[13]landeusdthatboothsystemtheoreticalspandexistenceexpperimenbtalvissues[14](see,.forsevinstance,addressedKellynandsMurrainyviscous[21],ithKanso,viscoMars-dyden,CoutandRo[7],wleyolle,andandMelli-HubterGran[20]andand[11references[3]).therein).bInpreciselyallonetheofpapisersdmenantionedeabtheoevnonrigide,deformation.theanuidaisconsistsuppcosedptoofbtroeandinossibilitviscidnandinspinthoseirrotationalinocase.w.existence,Thandisyassumptionerties)impliesanthat,enproInvidpapewdconsiderthatinitialwbevhaproblemvaemosolvofedeanThisellipticdelbinoundarysolidvndergoingalueundulatoryproblem,eformthewhicmoisdelinreducesviscoustouid.thetheordinarypartdthiierepapnthetialbequationsdycomingcalledfromcrNewton'saturlaorws.jIfthewoe.dodisplacemennotofncreatureegdecomplinecatpartthedviscositdeformationypart.eects,rigidtheofredisplacemenlresultsevtheanteractiontthemoanddelsolid,consiststheinpartthegivnSinceonaimstationarytoNaovier-Stoksiblyesseveqcreaturesutoationsklefcaseoaroundedtheouidsystem,whicdomainhbarethecoupledistoofNewton'sunknolaThereforewseforvthetosh-likkleefrswimmingeoboundaryjpre.ct.dicultAshasfareenastlywineeralknoersw,theonlyoffewbpapdiesersinhaviscousvuidefortacstakledce,theandproblem[12],fromMart?n,thisvpverspTectiv[29],eeireisl(seeorCarlingLee[4],SereginLiuLetandalsoKationwinaccasehif[26uid-rigid]lling).wholeTheseacpaptheersofassumerothelledathastheeenuid-bnoestigateddyGaldisandy]stemsRecenlls,theeralwholeorksspacetheandatheyainytroisducethecomputationalteractionuidadynamicsincompressiblemethowdsantoorinelasticvoestigate(see,theinstanceloandcomotionollero[8],fbsh-likDesjardineEstebanobGrajectsdmonin[5],aEsteban,viscousdmoincompressibletuid.LeTheallecn]umericalBoulakiamethoAsdswillinetromoreducedbinw,theofabparticularitiesoourvorkethatmenetionedopapuseersydoconstitutivnlaotforseemsolidadaptedwtoimpthethesimpartultaneousthesimThulationadvoftagesthethismotionpofhsevineralglobalimmeharacterrstoedossibleobtacts)jects.theOnsthenothersolutionshand,inthepmathematicalyanalysisusingofumericalthedsassoiredciatedysystemdevofedPDE'sth(thrigid-uida2tS0
1S C0
X S0
2
X :S [0;1)!R ;0
R X(y;t) =X (X (y;t);t) 8y2S ; t> 0;0
R X X
RX
X
X
X
S0
1t > 0 y7! X (y;t) C S0
S (t) S (t) =X (S ;t) y2S t7!X (y;t)0 0
1 C X (y; 0) =y
oconsmotributionsmobroughetNainthebbyassumptionsthspisclasswwhicorkakconsiofstsvinofgivingassumptionsarstwtoeakprobformtheula-cantionsome(ofappropriatemixeddisplacementofypariablese)equationsandbaneapproologicalximationSectionscehememassfordtheagoNewton'svverningbequations.mainThisofsctohemevingisOurnallyytestednononbinsomeinundulatorytromtingotionthestheobservanedthebwhereasyetheandzowhicologiststhisincorderationstoegetusstraaiagthehbasedt-line-swimmingFortheturning.olevMoreofromvwer,forwyeetakmappingeinitiasdosevsevanistagemappingofetheexistencefactforthatsatisesourpriorimethoanddelostillpartwoforkstoif[31]wwhereeahaandvanemapping,sevundulatoryeralcreature.immersedgbwomotiondies,binwnorderdeterminedtovsimeloulateundulatorythewillsimosedultane-knooussatisfyswimmingas-ofwilltenwAnomotionsh-likfromebcreatures.satisfyingThislpapener.iseorganizedtheas.follohows.ofIinatesninSectionter2.wiseevdescribOureces.theypmoindel.ell-pSectionis3theis,devuidotedestoththe.statemenfortobtainedof,thearymainltheoreticalisresult.sertsTheresultlosuppcalthatexistencemotionofofstrongcasesolutionsaisothprothevextendededbinresultSectionthe4.proThedprohofmethoofestimates.thaetoglobaleldexistencecitandvuniquenessofresultrigidisthegivliftingenaninedScomeahashicti(2.1)oTnis5.rigidIntSectionduced6iswappropriateeothderivrepresenetheadeformationwtheeakInformremaininofpartthethisgoorkvrigiderninginequationswillandewunknoetodescribeefromagosemi-discretizationerningwithbrespw,ectthetomotiontheoftimebvsuppariable.toFinallye,wnintoSectionsev7ralwsumptionsehdescribbegivainclasssection.ofexamplepundulatoryossiblehangedeformationscomingofzotheoswimmersservandandwourewilillustratebthemgivbiny7nLetumericalgivsimtheTheonsecondundulatorymotion3onoWncs.ose2systemThecogordvwitherningoriginequationsthe2.1cenAofkinematicismoOurdelassumptionof(H1)sh-likoreeryswimmingmethoDenote,bmappingyaies.edttheSobdomainisoosedccupieddieomorphismbwyonthcreatureeforcreaturelainwhereatoreferencetheconguration.equationsWvier-StokeeassumecouplingthatboMoreober,isevanryoplemenalueconnectedthesetvwithoundimmersedanderalabtheoundaryof.thatMoreoandvaer,theoreticalwOureul.ati t> 0 Y X
X (Y (x ;t);t) =x ; Y (X (y;t);t) =y
x 2S (t) t> 0 y2S0
X
Z Z
dx = dy 8t> 0:
S (t) S0
w S (t)

@X w (x ;t) = (y;t) 8x 2S (t); t> 0:@t y=Y (x ;t)
S (t)0 0
S (t)
Z Z
(x ;t) dx = (y) dy 8t> 0;0
S (t) S0
(Y (x ;t))0 (x ;t) = 8t> 0; 8x 2S (t):
det (rX )(Y (x ;t))
S0
Z
(x ;t)w (x ;t) dx = 0 t> 0
S (t)
Z
x1 ? (x ;t) x w (x ;t) dx = 0 t> 0 x =
x 2S (t)
x2? ?x x =
x1
Z Z
(y;t)X (y;t) dy = (x ;t)x dx = 0 8t> 0:0
S S (t)0
Foi.e.,uallghbtheestotalwvpolumeinoftothethecreaturevisvpreservandedof(btyeassumptioneld(H2)),wingthedycreaturepis,,inofgeneral,ycompressible.creatureMoreoRemarkvinercensincedyourmotion,aimwieldsLettoasstudysuppself-prtheop(H2)elilebdappliedmotionsconserv,TheitforiofsynaturaldenotetotheassumeethatpreservtheandundulatoryAssumptionsmotionimplydothatesofnotofebthat,notthethelinearthand(2.3)alththereferenceangularthemomendensittabofevthecreature,creature.vBy,usingosedthesatisfyfactfollothatassumption.theTheoriginvofgourosystemwholeoftocorincipleordinatesationcoincidesforwithmassthe.masswhere,centotalterolumeofthedenoteeldyields,,ethesebassumptionsdensitcanthebectorebwrittenisased,(H3)letmass.of2.1.ation(H1)conserv(H3)the,ofparticular,formthecalositionlothetheterwhereasmass(2.5)theboyistheaectedinyvundulatoryersei.e.dea,:i.e.(2.6)theDenotedieomorphismcongurationsatisfyingthe(2.2)solidforofevyfortheallbNoticey(2.4)eryundulatoryoreloyerythe,vandcit,of(H4)written.aTheectordeformationonisi.e.,alsomo4dify2 2RX :R [0;1)!R
R X (x ;t) =R x +(t);(t)
2 : [0;1)!R
t> 0 (t) R

t
S((t);(t);t) =R S (t) +(t) 8t> 0:(t)
2X :S [0;1)!R0
2(;;X ) : [0;1)!R
: [0;1)!R X
X(y;t) =R X (y;t) +(t);(t)
S0 0
Z
M(t) = (y)X(y;t)dy 8t2 [0;1);0
S0
X (0)
X
t
2 ?L (S ) R X (y;t)0 0 (t)
Z Z
@X0 2 0 ? (t) (y)jX(y;t) (t)j dy = (y) (t) (X(y;t) (t)) dy:0 0 @tS S0 0
(0) X
t> 0
0 0 ?u (x;t) = (t) + (t)(x (t)) +w(x;t) 8x2S((t);(t);t);S

w(x;t) =R w R (x (t));t 8x2S((t);(t);t):(t) (t)
w
(x;t) = (R (x (t));t) 8t> 0; x2S((t);(t);t)(t)
m
S((t);(t);t)
Z
m = (x;t) dx:
S((t); (t);t)
theuctgivdwithproosedinnerthetheplaneeEutakthe,entotheectandrespthewithws(2.9)thetiatemotiondierenaethewareifrotationhand,orienotherTheespththeOntra.yyotherbcitdeterminedeuniquelycomingiswthatside(2.9),fromtodensitkisbacourgoingabyWbciatedimplies,efactanThisen.theyofbaxisdeterminedandniquelyter(2.10)massThe,ab(2.7)oassumptionv(2.12)eords,relationvaeldncandectheafactthethatrstutermsistis(2.11))uniquelydel.determineddeformationbTheyeldthatoyieldsitheyuniquenesswnsofvthenctionsrepresenstresstationangle(2.1),th(2.7).atrixItandisofeasygivingto,cevhecykforthatothemomenEulerianwithvtoelotocittheybeldassofand,thetersofoislasidbisbgiv(2.14)en,itforFevInerywsothethatlerianobtainelobyyofecreaturewb2.1,dRemarkompuseinepartwfromandrigidon(thetegratetinoeinwrigh,handyofband(2.9)partulacomingformthetheoflycreature.ultipEulerianmyeofwbifdyIndeedg(H4).vandb(H3)mo(H1),insatisesunknoandeenoughoothandsmofuarethatandethat.hofcesuto(2.7)assoandm(2.1)issatisfyingcreaturetriplethonetation(2.11)thewhereanglemostisat(2.13)existserytheregivThenbfunction.(2.6).othmasssmooftbconstandynonitsatisinertia,thatre-Assumeect2.2.anRemarkorthogonal(2.8)theyofbmotionenpassinggivyismtimecenatofcreaturecreaturetheofycenbtheiedjectoryccuptheowhereregionaretheusuallythatenwsyfolloyinbenandisuserigid(H4)abfollothethatromitgivemotionvTheow5eZ
2I(t) = (x;t)jx (t)j dx:
S((t); (t);t)
Z
m = (y) dy:0
S0
2
R
S((t);(t);t) t
t F((t);(t);t) =
nS((t);(t);t)
@u
u + (ur)u +rp = 0 F(;;t); t2 (0;T );
@t
u = 0 F(;;t); t2 (0;T );
u = 0 @
; t2 (0;T );
0 0 ?u = + (x ) +w @S(;;t); t2 (0;T );
Z
00m = (u;p)n d (0;T );
@S(; ;t )
Z
0 0 ?(I ) = (x ) (u;p)n d (0;T ):
@S(; ;t )
> 0 u
p
1 TD(u) = (ru) + (ru) ;
2

(u;p) = 2D(u) p Id;
Id M (R) t2 [0;T ] x2@S((t);(t);t)2
n(x;t) S((t);(t);t)
m I(t) t
u(x; 0) =u (x) x2F((0);(0); 0);0
0 0(0) = ; (0) = ; (0) =g ; (0) =! :0 0 0 0
systemothevniteconditionssystemyabintheareIninstandsisforythehaviscositly(2.16)ofsystemtheouidthe,e(2.21)ainiswtheidEulterianthevwelothecitinertiayateld(2.14)ofbtheWithuidandanddensitintodenoteselledthethepressuredeldccupiedofthethedenoteui(2.17)d.theAtoprimewstandsefordthetedderivthe(2.20)Recall(2.15)at6twitththeresptectbto(2.15).time.isBytheusindomaingatheeclassicalynotationthatLetofusisnoticethethattheinttenfromcan(2.5),otion(2.13)theandom(2.14),owbeonhasveebthato2.2l(2.19)atTheu(2.22)normaltheinstanstress,tensoreeldvfullthatisuidenedlls,borienytosysteardsmsoLetid.bthatemassanandopmomenenofbinstanoundeddivsetofinsolidrepreseninstanti,ngdened(2.23)ywhereandonTheis(2.16)-(2.23)thecompletedidenytitinitialythematrix.inthethebdvomnotationainbosupp.osingMoreothevyer,(2.24)foruidccupiedequalbone,yfullthedescribingsoself-proplasandwriid-uidbsystem.creatureRecallingof(2.18)mthatation(2.25)operator