4 pages
Français

CHAPITRE ELEMENTS D'ANTHROPOLOGIE REGIONALE

-

Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description


  • cours - matière potentielle : face aux réglementations européennes


CHAPITRE 4 ELEMENTS D'ANTHROPOLOGIE REGIONALE Les pratiques sociales qui traversent les sociétés s'enracinent dans un environnement physique et social. Sur le plan pédologique, la région est constituée de terres agricoles fertiles qui favorisent l'élevage, les cultures agro alimentaires (céréalières, maraîchères) et les cultures agro industrielles (lin et chanvre) qui sont à l'origine de la densité de son peuplement. Par la laine puis le lin, l'activité drapière stimule la croissance urbaine 1. A dominante rurale, les Pays-Bas Français, affirment après le XIIIème siècle la prédominance d'une culture urbaine sous l'influence d'une bourgeoisie industrielle et commerçante qui contrôle un arrière-pays rural et traite avec les artisans des métiers textiles (tisserands, foulons, teinturiers) à l'origine d'une population ouvrière urbaine. Cette culture urbaine repose sur une trame constituée de villes drapières et commerçantes qui s'enrichit d'un pays rural dynamique qui doit son opulence à des innovations culturales précoces. Cette structure urbaine constitue ainsi le maillage du territoire avant les transformations qu'imposeront l'exploitation de la houille (à partir du 18ème siècle) et la grande industrie textile (au cours du 19ème). Sur ces bases, la société industrielle bouleverse le peuplement de la Région Nord-Pas-de-Calais qui connaît un processus particulier à l'origine des pratiques culturelles différentes que l'on observe aujourd'hui.

  • métropole lille

  • crise industrielle

  • efforts de la politique de construction

  • mouvement ouvrier

  • cultures urbaines

  • cotisation sociale

  • extension des conflits de l'entreprise

  • droits quant au logement


Sujets

Informations

Publié par
Nombre de lectures 28
Langue Français
Universit´edeNice D´epartementdeMath´ematiques
Cours 4 : Noeuds, cols, foyers et centres
Ann´ee2011-2012 Syst`emesDynamiques
Jusquicinousavonse´tudie´des´equationsdi´erentiellescommemod`elespourladynamiquedune quantit´eunique´evoluantaucoursdutemps.Apre´sentnousallons´etudierdessyste`mesdedeuxe´quations di´erentiellesmod´elisantladynamiquededeuxquantite´s(parexempleleseectifsdedeuxpopulations) e´voluantavecletempseninteractionluneaveclautre.
Syst`emesdedeuxe´quationsdi´erentielles Onconside`relesyst`emededeux´equationsdi´erentiellessuivant: 0 x=f(x, y) 0 y=g(x, y)
(1)
ou`fetgsont deux fonctions que l’on supposeralissesesc`at-ir-donecˆnitnemue´dtavir.)lbse( On appellesolution(ruetcevnu)1(et`emusysdx(t), y(tsdlentdo))no´neessuecxoodrnctionsontdesfo 0 du temps quie´veirntonaeterid-aleuqselleltiener-`ste,cme`e´dilestsyx(t) =f(x(t), y(t)) et aussi 0 y(t) =g(x(t), y(t)). On appellecondition initialeruedalosulitnoa`lavaleonlue(qlaitinitnatsnil choisitsouvente´gala`0),cest-`a-direlevecteur(x(0), y(0)). Parexemplepourlesyste`medi´erentielsuivant,appel´eoscillateur harmonique, 0 x=y (2) 0 y=x
onpeutv´erierfacilementque,pourtouteslesvaleursder0 etθ[0,2π[, le vecteur (x(t), y(t)) = (rcos(tθ), rsin(tθtioiocdnitlainine(2))estunesolutionysude`tsteemssuaueiqsolatilulaon,0) est (x(t), y(t)) = (2cost,2 sint). Commepourles´equationsdi´erentiellesuniques,onpeutrarementcalculerlessolutionsexactesdun telsyste`medie´rentiel.Mais,commepourlese´quationsdi´erentielles,onpeutmontrerquepourassurer lexistenceetlunicite´dessolutionsdusyst`eme,e´tantdonne´euneconditioninitiale(x(0), y(0)), il suffit que les fonctionsfetgralrclecueutdonc,sses.Onpdtsevaioa`´dfeua´tlenssnied´uiiltneiosnoitauqeq dessolutionsexactes,chercher`ade´crirelecomportementdessolutionssoitparunee´tude qualitative, soit encalculantdessolutionsapproch´ees(ou,mieuxencore,lorsquecestpossible,encombinantlesdeux approches).
Trajectoires et champs de vecteurs Onpeutrepre´senterge´om´etriquementlessolutionsdusyste`medi´erentieldedeuxfa¸consdie´rentes: soit on trace les graphes de chacunes des deux composantes de la solution comme des fonctions du temps, soit on trace la courbe image det(x(t), y(t)) qui est unebruorapee´mae´rtecdans le plan (x, y) qu’on appelle unetrajectoire.eme`stsydu Dans le cas de l’oscillateur harmonique, les trajectoires sont des cercles concentriques (pourquoi?). Onsaitquelavitessedede´placementsurlacourbesolutionestdonn´eeparlevecteur vitesseque l’on peutcalculersimplement`alaidedesde´riv´eesdesdeuxcomposantesdelasolution   0 x(t) V=. 0 y(t)
0202 A noter que plus sa longueurkVk=x(t) +y(t) estgrande et plus la courbe est parcourue rapidement parladynamiqueassoci´eeausyst`eme. Bienquonneconnaissepaseng´ene´rallestrajectoires,onconnaitne´anmoinsleursvecteurstangent V(x, ype´nelratsyseme`uitpusqesilontd)neottuopniitlereneid´V(x, y) = (f(x, y), g(x, y)). Au syste`medi´erentielcorresponddoncunchamps de vecteurseer´srapaetm´uocssebr.naleltEdanslep t7→(x(t), y(tedit`emntie´ereltseslnoebtsocrusoui)q)itulostnsysudsnogeanesntchenunaceledsru pointsauvecteurdecoordonne´es(f(x, y), g(x, y)). Etudequalitative,isoclines,e´quilibres Le´tude qualitativedusenaxemdnraitdrue,unusyst`emisno`ets`tsycemeerinap,`´eadrmteaper¸cudu champs de vecteursdne´ddereuianl’alluredes trajectoires. Pour cela on remarque que sif(x, y) = 0 en un point, le vecteur du champs de vecteur sera vertical encepoint,etdemˆemesig(x, yquatd´eionqteudeiuruebalocizortaonOnl.d´en0=)sli,hareg(x, y) =
1