Entire curves and algebraic differential equations
66 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Entire curves and algebraic differential equations

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
66 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Entire curves and algebraic differential equations Jean-Pierre Demailly Institut Fourier, Universite de Grenoble I, France April 16 2009, Saint-Martin d'Heres IF - IMPA Conference Jean-Pierre Demailly (Grenoble I), 16/04/2009 Entire curves and algebraic differential equations / IF - IMPA

  • constant holomorphic map

  • simply connected

  • open subset

  • has no

  • dimensional manifold

  • liouville's theorem

  • entire curves


Sujets

Informations

Publié par
Nombre de lectures 67
Langue English
Poids de l'ouvrage 1 Mo

Exrait

Entire curves and aic differential equ
algebr
Jean-Pierre
ations
Demailly
InstitutFourier,Universit´edeGrenobleI,France
April
16 2009, Saint-Martin d’Heres ` IF - IMPA Conference
Jean-Pierre Demailly (Grenoble I), 16/04/2009
Entire curves and algebraic differential equations / IF - IMPA
Entire curves
Definition.By anentire curvewe mean a non constant holomorphic mapf:CXinto a complex n-dimensional manifold.
Jean-Pierre Demailly (Grenoble I), 16/04/2009
Entire curves and algebraic differential equations / IF - IMPA
Entire curves
Definition.By anentire curvewe mean a non constant holomorphic mapf:CXinto a complex n-dimensional manifold. IfXis aboundedopen subset ΩCn, then there are no entire curvesf:CΩ (Liouville’s theorem)
Jean-Pierre Demailly (Grenoble I), 16/04/2009
Entire curves and algebraic differential equations / IF - IMPA
Entire curves
Definition.By anentire curvewe mean a non constant holomorphic mapf:CXinto a complex n-dimensional manifold. IfXis aboundedopen subset ΩCn, then there are no entire curvesf:CΩ (Liouville’s theorem) X=C r{01∞}=C r{01}has no entire curves (Picard’s theorem)
Jean-Pierre Demailly (Grenoble I), 16/04/2009
Entire curves and algebraic differential equations / IF - IMPA
Entire curves
Definition.By anentire curvewe mean a non constant holomorphic mapf:CXinto a complex n-dimensional manifold. IfXis aboundedopen subset ΩCn, then there are no entire curvesf:CΩ (Liouville’s theorem) X=C r{01∞}=C r{01}has no entire curves (Picard’s theorem) A complex torusX=CnΛ (Λ lattice) has a lot of entire curves. AsCsimply connected, everyf:CX=CnΛ n ˜ lifts asf:CC,
˜ ˜ ˜ f(t) = (f1(t)    fn(t))
˜ andfj:CCcan be arbitrary entire functions.
Jean-Pierre Demailly (Grenoble I), 16/04/2009
Entire curves and algebraic differential equations / IF - IMPA
Projective
algebraic
Consider
now
varieties
the complex
projective
Pn=Pn(Cn+1r{0})CC=
Jean-Pierre Demailly (Grenoble I), 16/04/2009
n-space
[z] = [z0
:z1
:  :zn]
Entire curves and algebraic differential equations / IF - IMPA
  • Accueil Accueil
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • BD BD
  • Documents Documents