//img.uscri.be/pth/566acee2306045ed1160b380ed19393380fcc1dd
Cet ouvrage fait partie de la bibliothèque YouScribe
Obtenez un accès à la bibliothèque pour le lire en ligne
En savoir plus

Internal stabilization for the wave equation

4 pages
Internal stabilization for the wave equation Talk at Chengdu (China) 2004 1 Motivation The purpose of this talk is to give some appli ations of the quanti ation of unique ontinuation property in the framework of stabilization for the wave equation in bounded domain. Here, we deal with the following unique ontinuation property: if the solution of the wave equation with homogeneous Diri hlet boundary ondition is null in a subdomain then the initial data are identi ally zero. The more strong quanti ation of unique ontinuation property is given by the following observability estimate: Theorem, Observabilty estimate [ BLR?, [ Bu? .- Let be a bounded onne ted C 3 do- main in R n , n 1, and ! be a non-empty open subset of . Let us onsider the following wave equation in R, with initial data and homogeneous Diri hlet boundary ondition : 8 < : 2 t uu = 0 in R u = 0 on R u (; 0) = u 0 , t u (; 0) = u 1 in . Under geometri al hypothesis, there exist a onstant > 0 and a time T > 0 su h that for all initial data (u 0 ; u 1 ) 2 H 1 0 ( ) L 2 ( ), the solution u satises the following estimate : k(u 0 ; u 1

  • wave equation

  • homogeneous diri

  • equation des ondes

  • solutions des problemes hyperboliques

  • following estimate

  • diri hlet

  • estimate

  • stabilisation de l'equation des ondes par le bord

  • boundary ondition


Voir plus Voir moins

In
ternal
stabilization
damp
(
(
for
a
the
=
w
;
a
(
v
et
e
)
equation
fol
T
x;
alk
)
at
w
Chengdu
result
(China)

2004
et
1
oundary
Motiv
0
ation
.
The
;
purp
Z
ose
h
of

this
t
talk
w
is
1
to
e
giv
[
e
C
some
non-empty
applications
)
of
e
the
initial
quan
t
tication

of
+
unique


solution
tin
k
uation
k
prop
1
ert
!
y
2
in
energy
the
1
framew
w
ork
jr
of

stabilization
v
for
w,
the

w
;
a
More
v
the
e
onen
equation
et
in

b
R
ounded
!
domain.
of
Here,
1
w
non-ne
e
the
deal
quation
with
1
the
gene
follo
<
wing
+
unique
=

1
tin

uation
(
prop

ert
w
y:
,
if
satises
the
estimate
solution
u
of
1
the
L
w

a

v
0
e
u
equation
)
with
.
homogeneous
that

(
hlet
)
b
R
oundary


x;
is
2
n
(
ull
j
in
of
a
w
sub
equa-
domain
b
then
E
the
T
initial

data
(
are
<
iden
;

,
zero.
v
The
wing
more
Theorem,
strong

quan
.-
tication
b
of
ounde
unique


domain
tin
,
uation
,
prop
e
ert
en
y
.
is
2
giv
(
en
e
b
function.
y

the
lowing
follo
wave
wing

observ
;
abilit
,
y
and
estimate:

Theorem,
ondition:
Observ

abilt

y
(
estimate
t
[
in
BLR],
;
[
w


.-
0
L
)
et
;

0
b
w
e
0)
a
in
b
(
)
ounde
the
d
u

the
onne
lowing

:
d
(
C
0
3
u
do-
)
main
2
in
2
R

)
n
H
,
(
)
n


T
1
Z
,
j
and
(
!
t
b
j
e
dxdt
a
whic
non-empty
implies
op
the
en
E
subset
w
of
t

=
.
2
L

et
j
us
t

(
onsider
t
the
j
fol
+
lowing
w
wave
x;
e
)
quation
2
in
dx

a

ed
R
a
,
e
with
tion
initial
dened
data
elo
and
satises
homo
(
gene
;
ous
)


b
+
oundary
E

w
ondition
0)
:
E
8
w
<
0)
:
precisely

w
2
ha
t
e
u
follo

stabilization
u
:
=
Exp
0
tial
in
y

BLR]

L
R

u
e
=
b
0
d
on
onne

d

3

in
R
n
u
n
(
1

and
;
b
0)
a
=
op
u
subset
0

,
L


t
C
u
0
(
!

b
;
a
0)
gative
=
L
u
us
1
onsider
in
fol

damp
.
d
Under
e
ge
in


al
0
hyp
+
othesis,
)
ther
with
e
data
exist
homo
a
ous

b
onstant


8
>
:
0
2
and
w
a
w
time

T
x
>

0
w

0
that

for
(0
al
+
l
)
initial
=
data
on
(

u
(
0
;
;
1
u
w
1

)
0)
2
w
H
,
1
t
0
(
(
;

)
=

1
L

2
1Under
ge

al
to
the
>
hyp
e
othesis,
data
ther

e
k
exist

two
1


onstants
(

k

H
>
t
0,
een

Without
that
b
for
us
al
t
l
;
initial
u
data
lowing
(
H
w
(
0
1
;
!
w
t
1
this
)
Other
2
and
H
unique
1
geometry
0
estimate
(
2

)
op

quation
L

2

(
)
u
,
Then,
the

solution
1
w
=
satises
u
the
(
fol

)
lowing
(
)
de
Remark

)
ay
k
estimate
(
:
k
k
2
w
"
(
T

e
;
observ
t
ha
)
b
;
it

estimates
t
prop
w
yp
(
will

estimate
;

t
onne
)
n
k
b
2

H
fol
1
R
0
ous
(
)
<

=
L
0
2

(
)
t

1

a
e
time

l
t
1
k
L
(
u
w
u
0
(
;
2
w

1
1
)

k
0
2
(
)
H
Z
1
j
0
is
(
)
0

2
L
ln
2
;u
(
)

)
,
k
8
;T
t
;

0
0
"
.
>
Both
al
ab
[0
o
.
v
that
e
not
theorems
get
are
y
equiv
of
alen
e
t.
tro
The
F.

e
h
estimate
yp

othesis
traduce
are
tin
that,
y