ROUGH VOLTERRA EQUATIONS THE ALGEBRAIC
33 pages

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

ROUGH VOLTERRA EQUATIONS THE ALGEBRAIC

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
33 pages
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

ROUGH VOLTERRA EQUATIONS 1: THE ALGEBRAIC INTEGRATION SETTING. AURÉLIEN DEYA AND SAMY TINDEL Abstract. We define and solve Volterra equations driven by an irregular signal, by means of a variant of the rough path theory called algebraic integration. In the Young case, that is for a driving signal with Hölder exponent > 1/2, we obtain a global solution, and are able to handle the case of a singular Volterra coe?cient. In case of a driving signal with Hölder exponent 1/3 < ≤ 1/2, we get a local existence and uniqueness theorem. The results are easily applied to the fractional Brownian motion with Hurst coe?cient H > 1/3. 1. Introduction This article is the first of a series of two papers dealing with Volterra equations driven by rough paths. For an arbitrary positive constant T , this kind of equation can be written, in its general form, as: yt = a+ ∫ t 0 (t, u, yu) dxu, for s ? [0, T ], (1) where x is a n-dimensional Hölder continuous path with Hölder exponent > 0, a ? ?d stands for an initial condition, and : ?+??+??d ? ?d,n is a smooth enough function. Motivated by the previous works on Volterra equations driven by a Brownian motion or a semi-martingale [2, 3, 15, 21], often in an anticipative context [1, 4, 5, 19, 18,

  • ?su ?

  • unique ?? ?

  • then

  • dimensional hölder

  • algebraic integration

  • rough volterra

  • hölder exponent

  • smooth functions

  • called algebraic


Sujets

Informations

Publié par
Nombre de lectures 53

Extrait

> 1=2
1=3 < 1=2
H > 1=3
T
Z t
y =a + (t;u;y )dx ; s2 [0;T ];t u u
0
dx n > 0 a2R
d d;n :R R R !R+ +
H > 1=3
H < 1=2
x > 1=2
n H 2 (1=2; 1) :
2 d d;n[0;T ] R !R
x

t;u (t;u;z) = (t u) (z)
d d;n> 0 :R !R ;;
appliedtothefractionalalgebraicAbstrafractionalBrocwnianroughmotioase:nthreewithyHurstatcooeciencurrenttegration.easilymeansareterpretedresultsareThe,theorem.THE.13,1.ofIntrVoductionforThisfolloarticletiniswiththeassumingrstregularofeasenseseriestheofcotwwVo,papthenersedealingclassicalwithoVthisolterrapapequationsendrivwithespncusesbTheyaroughoungpaths.aFrorroughanarianarbitraryirregularprespositiveecanconstanintTheuniquenesssame,bthisthekindenoftoequationdrivcanbbdeneeAwritten,TIONinTERRAitsongeneral2form,toas:forandferencesexistencetheory).calbloknoathegetofedealingwsystems,ytwnianonendrivingexp.der,H?larticlewiththesignalcases:drivingoungathatfor-H?lderofpathcasetheInparticulart.-dimensionalecienpcoeterolterratheory(1)),whereofVaisbayarnough-dimensionaltoH?lderariables),conprotinequationuousepathsolvwithYH?lder3).expoungonenUndertaslcaseuwgto,ofnciensiaarespofrststandsvfor.anolterrainitialexpressedcondition,solvandWcaseSAMYheUR?LIENtsomehandleandtoTIONSableregulararesomeandOUGHsolution,Sectionglobal(wareferobtain[9,e14]isfurtheraresmoonothpathsenoughTfunctiothenest.ourMotivwledge,atedisbrstyccurrencetheapreviouserwwithorksolterraondrivVbolterraaequationsBrodrivmotionensignalbayisaMoreBroecicallywnianthemotiontorfoaonsemi-martingal3ewing[2,(i)3,Y15,c21],Whenoftenisincase,anconanuousticipativwitheYconIntext(in[1,for4,n5,fBm19,Hurst18,a20]am,iwcalledepathhathevandethattaktenvupofwy,signal,(roughlyan:ishe2010.(withMathematicsectctitsation.v60H20.wworshallandvases.thatpaths(1)StobhasticinolterraandFedBrothemotion.ounga(Sectionstraigh(ii)tforwYardsingularapplicationase:totheaconditionsfractionalinBropreviouswnianformotion,witheHurstableparameterhandletcaseonenaexpeH?ldertwithadmitting.singularitTwithhiectsitswilltboeariablesacequationshievNamelyedifthankscantoeaasveariationandofethect.roughTINDELpathANDtheoryDEYdueAtoforGubinelliSETTING.[INTEGRA11],ALGEBRAICwhose1:mainEQUAfeaturesOLareenough,recalledunderbconditionseloVwtheRprogramofDatedeningMarcand19,solving2000equationSubje(1)Classicin60H05,aKeypathdswisephrwRoughatheory;yc,Valloequations;wingractionalforwnianinstance1 > 1=2 1=2 < <
Rt
(t;u;y )dx y u u0
dC ([0;T ];R )1
dC ([0;T ];R )1
x 2 (1=3; 1=2)
n H 2 (1=3; 1=2)
[0;T ] T 2 (0;T ]0 0
y t2 [0;T ] (y) = y yst t s
(y)st
y
Z Zt s
(y) = (t;u;y )dx + [(t;u;y ) (s;u;y )] dx :st u u u u u
s 0

t
x jt sj

Rs
[(t;u;y ) (s;u;y )] dxu u u0
x


> 1=2

x
nDf f R
beiroughthepnterpretterpretedhoinon.someyroughapathhosense.ecauseAs.menthetionedsbshallefore,somewwemeansshallnoiseresortdirectintthisextendedcase2toathewithformalismlemmasiner:trot.ducedbin),[1n1],inwhichangeherallovwsequationuscotousproyvaedtheYexistencecaseandisuniquenesstegrationofstudyawithlo4cal.solution,nallydenedtheonnotationsatsmallpiner,terv5.3,aloungequationpinevearinginappntegralourforThissomeeinpresenthen),latterparametererstwuaHof(Sectiona5)..WimpecwiVllmethothenopgeneraloiintedtelloutcanthecoteccohnicalwdicultiesreonesmbustdevcopdrivetinwithAwhenDEYtryingsametoeextendthethissignalloofcalssolution.usHerebthenusedtohaseisatobriefequationskxeetcthwofwtheatsttermratetegralgyawtoeishathatvtuallyeerefolloclassicalwalloedtoinsolutionordertialtoroughobtainwhourharesults:tothethealgebraichereinptegrationonformalismInreliesbheawhatvilygeneralizedonincrementheshonotiontoofsolutionincremenints,roughwhic,hclassatsrweevsimplytgivien,alsointcasesystemsofroughamainlyfunctionItwithtooforonecoparame.terThefBme-dimensionalwatlytotviouslysetting,obe,orderberyaappliest(thisiswithpapsignalw-H?lderatanotioisalgebraicWhenhase:neededc3.toAequationtba-H?lderheuristicprolevSAMYel,,theecienmainregular.dierencewithbofetsingularwteen5classicalofdierenntial,equationsprodrivtecenpbonedyendix.roughtsignaltrosxingandhourtheVeolterrathesettingalidenedesorderinsolvtheourdepbendanceaofdtheoinincremenargumentHooughevrasThee(iii)see.SectionofthetheelongspwhenossibleinsolutionYonastheinwhossibleostillleitpastandofwilltheentrainducejectorysev.problemsIndeed,theifargumespacetsiswiagsolutiongettoglobalequationfor(1),dierenthensystemonethehascase.theexplainsiny(1)eequationvedecidedsolvcthenradicallycansettingetedWin4.comSectionaatidetailedpape[7].bthiswillreference,hywhicofanalysis,wcarefulcallaconerolutionalevts,wehowrequireswtegralgetinglobaloungtoY(1)thecaseofaextensiondrivingThisask.forywidebofwecieneloe(2)ItAsasonewmighertortanexpforectot,ntheluderstaintreatmentegralofinolterra(2)bcanexistingbpathseds,dealtbwith(i)justallaswstheconsiderclassicalmdiusionecasedrivingtreatedecieniwn([11].i)Inmethootherprwsenords,hereunderorkssuitableerfecregularitwyforbhe,oungwhenandebanfurthertoinariabletodenotedvapptheearingofisingularnecientheeaking,inHeretegrandhodoouresernotstructured:plaeycallaSectionprominenthetnrole.ofTheinsecondwhictermwillinethelaterrighSectiontishandotedsidetheofof(2)(1)isentheyonespwhicconhuousiscesstTINDELypicalNDofAthewhenVcoolterratsetting,isandSectionindealsvtheolvkindeequation,sathecowholecienpastUR?LIENofSectionfunctions,treats.caseItaisdrivistillgpAossibleandtotheretrievofesomesomehnical-H?lderareofospacetpato-incremenApptsLetfromnishthishiterminthanksductiontoythesomeregularitwhicyareofthroughouttopapwithwrespcall(1)ecttogradienitsofrstfunctionv,ariable,oninconditionsonand2w,wthetvstressf j
D f j
n;E;F U E C (U;F ) n
U F 2 (0; 1)

(n) (n)kD (x) D (y)kn; ; n;C (U;F ) = 2C (U;F ) : sup <1 :
kx ykx;y2U
C n


‘ > ‘ 0 V k 1 C (V )2 1 k
kg : [‘ ;‘ ] ! V g = 0 t = t1 2 tt i i+11 k
i k 1 (k 1)
C (V ) =[ C (V ) k1 k
k C (V )k
k+1X
i :C (V )!C (V ) (g) = ( 1)g ;k k+1 tt ^1 tttk+1 1 i k+1
i=1
^ti
= 0
C (V ) C (V ) ZC (V ) =C (V )\ BC (V ) =C (V )\ k k+2 k k k k

g2C h2C t;u;s2 [‘ ;‘ ]1 2 1 2
(g) =g g ; (h) =h h h :st t s sut st su ut
(C ;) ZC (V ) = k
BC (V ) k 1k
k 1 h2ZC (V ) f2C (V )k+1 k
h =f
h2C (V ) h = 02
h =f f2C (V )1
jC (V )2
k k 23
inanandtfactre,unique)wwederivdenoteebvyen,allspacesubsetectorkvBanacaytheesettiatingofEQUAcaonpaptin.uousbfunctions,,(4)erssetbopumbasicnLemmarealthearbitrarysuchoelemenwcantniforey:measuressucanhturethatuseabwotedwinganfollotionthehaininducedortrotowhenevisercomplexinacyclice,bforcanparticular,t,incremenfurtherforfsomecomeofenotionyThe.them.implies.denoteSucthhaaofunctionarewillTbineVcalleducafaronofactingthateratorthe-incrwillementout,areandlettingwtoeiswillfsettopctaryAlgebraicelemenwanewithducetogetherust,andincremenes.ofbnotionmappingstheurthermore,oncbasedthatis-timeswithb.i.e.Thenopseteratoranddealywill.relyfolloeerttshweltegerholdsfLwhic.wtowillwingsomeThenassumptions.a,isethethefarof.tegralLemma-incremenallts,bandwishdenedtoasefollorespwsforon(noninueextendedwthe3duction,ustroa:ofinTERRthe:inwtionedamentAsbts.incremenIncremenfunction2.1.dierence).ts.fincremeneofonesspacesethereallyonthrough-relationsthealgebraicer,usefulobtainedbutytarytheelemenreceandsomdevrecallsectionalsoThen,willoreyWn[8]).urofTheterminologyintegrathe2.to,accordingemapvsewingb(orthecalledtrosealsorletehveacinFitsativandounded(3)withwherefrom,tiableeratorFopitmeansreadilythathecthisedparticulartheargumendierentofistheomitted.isThen,aefundamenotaldepropofertenyanofspacesthean,hwhicarehInistheeasilywingvproperied,yiwhicswthatlaboffor,use,tstrue:incremen2.1.,etwhereIofandesplaisinconsideredspacesasfolloan.opthereratorexistsfrom(nonspacconcerned,theofofregularitdenitionasthethattoAsrecallyshallObservethatw2.1,thatNamelythe.tsWthiseewillariable,denotesucsetting.thatourthenectibtegralswritteninsgeneralizedwithofdierennotionsssuitablemedeneutoqorder)Kereinthatandthetial.essenhewbgetwillheuristichterpretationcTIONSiAwhOLtegration,OUGHinitalgebraichoofmImhconceptsgiv.1-incremenSomeissimplefromexampleseingofexactactionstofamain(i.e.,nitewhicNoticehourwillubdiscussionsalludedmainlytoonab-incremenowithRve,canorbheeseenuseasanalyticalanNamelyopweratormeasureactingsizeonthesef2C (V )2
jf jst
kfk sup ; C (V ) =ff2C (V );kfk <1g: 2 2jt sjs;t2[‘ ;‘ ]1 2
C (V ) =ff2C (V );kfk <1g h2C (V )1 31
jh jsut
khk = sup; ju sjjt ujs;u;t2[‘ ;‘ ]1 2
( )
X X
khk inf khk ; h = h; 0< < ; i ; i ii i
i i
P
fh 2C (V )g h = hi 3 ii
2 (0;) k k C (V )i 3
C (V ) :=fh2C (V );khk <1g:3 3
1+C (V ) =[ C (V ) > 13 3
ZC (V ) ZC (V )3 3
1+ ZC (V ) N [f;C ] 3 j
0C j = 1; 2; 3 2C (V ) N [;C (V )] = sup kkjj j s Vj s2[‘ ;‘ ]1 2
h2ZC f2C f =3 2
h
f
> 1 h2ZC ([0; 1];V )3
h2C ([0; 1];V ) ( h) =h2
khk c N [h;C (V )]; 3
P
1 c = 2+2 k :ZC ([0; 1];V )! 3k=1

C ([0; 1];V ) =2 ZC ([0;1];V )3

g2C (V )2
1+g2C h = ( )g f2C (V ) h =f13
nX
(f) = lim g ;st t ti i+1
j j!0st
i=0
=ft =s;:::;t =tg [s;t]st 0 n
f g
ortantlyenoughartitionev,forthethetheconstranduc[7,ttegrationihasonFoftherourygeneralizedforinersions.tegrals,inthisquiteincremenistquencelea2.3isthisuniqueaunderwheresomeisadditionalwherregularinteywconditionsthisethexptherecanssnon-initiatedetedandinnicetermstheofertthesmallH?lderementspacessuchw,eFhaforvforenormjustvinetroisduced:toTheoremh2.2hoices(Thefersewingformap)simplied.ALoineto,wumducedbof.irregularFeortoanyHoesomethingrse.goingThenpreviousspacesvthenonhconsideredjectewingb.ntegration,ts)theranyeandexistssetaeuniqueIncasamenormsyof.kindexistssamesetthesuchthatlastarktheremum

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents