//img.uscri.be/pth/9cb80e86c83c26365632701d4aa7011f13c0fe2f
Cet ouvrage fait partie de la bibliothèque YouScribe
Obtenez un accès à la bibliothèque pour le lire en ligne
En savoir plus

Universita di Roma Tor Vergata and CMTP

De
26 pages
Distances in Noncommutative Geometry Pierre Martinetti Universita di Roma Tor Vergata and CMTP Seminaire CALIN, LIPN PARIS 13, 8th February 2011

  • d?1 ??

  • commutative algebra

  • metric space

  • topological aspect

  • noncommutative geometry

  • sup f?c∞0

  • sub- riemannian geometry

  • ?? ds


Voir plus Voir moins
DistancesinNoncommutativeGeometryPierreMartinettiUniversita`diRomaTorVergataandCMTPSe´minaireCALIN,LIPNPARIS13,8thFebruary1102
Metricaspectofnoncommutativegeometry00ds=D100DistancebetweenstatesofanalgebraAinterestinglinkswithotherdistances:.Nto(siLozzim&au;lciDhamsikst,uMdu¨lliee-rdoHsbne;uoIthcmmu,aKnaryejswik,.P.M)-distanceongraph(Anitedimensional),-horizontaldistanceinsubriemanniangeometry(A=C0(M)Mn(C))(P.M.),-Wassersteindistanceinoptimaltransporttheory(commutativeA)(D’Andrea,P.M.),-distanceinsomemodelofquantumspacetime(A=K=(S,?))(Cagnache,-distanceinsomD’Andrea,P.M.,Wallet);alsoyieldsametricinterpretationoftheHiggsfieldinConnesdescriptionofthestandardmodel(Wulkenhaar,P.M.).TopologicalaspectmostlystudiedbyRieffel,Latre´molie`reandarecentpaperofBe´lissard,MarcolliandReihani.