ENTROPY OF SEMICLASSICAL MEASURES FOR QUANTIZED CAT MAPS
8 pages

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

ENTROPY OF SEMICLASSICAL MEASURES FOR QUANTIZED CAT MAPS

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
8 pages
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

ENTROPY OF SEMICLASSICAL MEASURES FOR QUANTIZED CAT-MAPS GABRIEL RIVIÈRE Abstract. In the case of semiclassical measures of the quantized cat-map, we give a simpli- fied proof of Anantharaman-Nonnenmacher's result for semiclassical measures on a riemannian compact manifold of constant negative curvature [2]. We show that for any hyperbolic matrix A in SL(2,Z) and any semiclassical measure µ associated to it, the Kolmogorov-Sinai entropy is bounded from below, i.e. hKS(µ,A) ≥ ?+ 2 , where ?+ is the positive Lyapunov exponent of A. Thanks to Faure-Nonnenmacher-de Bièvre construction in [8], this bound is optimal. 1. Introduction In the case of manifolds of negative curvature, the Quantum Unique Ergodicity Conjecture states that all eigenfunctions of the Laplacian equidistribute on M in the high energy limit [13]. In [1], Anantharaman proved that for a compact riemannian manifold M of Anosov type, the Kolmogorov-Sinai entropy of any semiclassical measure associated to a sequence of eigenfunctions of ∆ is positive. Her result proves in particular that eigenfunctions of the Laplacian cannot concentrate only on a closed geodesic in the large eigenvalue limit. After that, in the case where M is a compact manifold of constant curvature K = ?1 [2], Anantharaman and Nonnenmacher proved the following explicit bound 1 on the Kolmogorov-Sinai entropy of a semiclassical measure µ: (1) hKS(µ, g) ≥ d? 1 2

  • quantum states

  • anantharaman-nonnenmacher's result

  • principle

  • result than

  • semiclassical measures

  • main simplification

  • ?? ?

  • cat-maps

  • weyl quantization

  • than


Sujets

Informations

Publié par
Nombre de lectures 31

Extrait

A SL(2;Z)
+
h ( ;A ) ;KS
2
A+
M
M

M K = 1

d 1
h ( ;g ) ;KS
2
g S M d M
~H H U
D~ ~H ( ) H Hi i=1
DX
y
= :i ~i H
i=1

D DX X
y2 2 2 2k k logk k k U k logk U k 2 log supk Uk :i i i i i L(H)H H H H j
i;ji=1 i=1
2L (M)
y
k Uk 2 2i L (M)!L (M)j
2 2 2A SL(2;Z) T :=R =Z
2
tumUniqueErgoyyositivdicitimpyyCforopronjrewctureactsstatesidentity:thatthealconstanlprincipleeigenfunctions(2)of[theAbstraLtoaplaciananelyquidilowingstributebonhavetheanin[2].thesemiclassicalhighthenerandgyquanliusualmmainietof[13].OneIntum[1],FAnanytharamaninproOPYvatorsedsatisesthatoffore.aouncompactctorriemannianv-Sinaimanifoldassoature,olicofwAnosovvriemannianttharaman-NonnenmacyInpase,sthehosenKgivolmogorothev-Sinaiinenfromtr[14].oalreadyptheyonoftizedancaseyforsemiclassicalameastudyseuretoasofsoisciatedmaptoerbaQUANTIZEDsequencesofameigenfunctionsopofomcurvpishepopositivartitione.isHerw,resultdedproisvunites,intropparticularolmothattoeigenfunctionssemiclassicalofintheypLaplacianforcannoteconcencurvtratenegaonlymanifoldononaresultclosedofgeoi-desictheindtheuselargeeigenfunctioeigethenwvofaluealimit.thatAfterythat,sideinbtheascasetropwherenfeationisofaycompactearedmanifoldwoftoconstansharptquancurvwatureegativsemiclassicaleInnGABRIEL[2],cAnanwstharamanoandyNonnenmacofherhaosproonesvokemodinstance,thsimplestedefolloenwiquannciatedgyexplicitmatrixbToundF1theonSEMICLASSICALthefKiolmogoroofv-Sinaierenfrtropeytoofthatatsemifolclassicalprmeasureertyofp:of(1)themanifoldswhereofi.caseelothefromInIdoductionbIntrThen,1.anytimal.veopyiswend(2)whereenougoroisKtheit,geociateddesicmeasureoywandonmatrixtheerbunithcotangeannthattshobundleWbaturethise[8],tiandtinofiscompacttheadimeasuresmensionforofher'sconstructionAnan.ofInedthisls[2],emecondocase,wthetoprothisofforwnasofsLaplacianBi?vreaher-deell-cenmacpartitionThisId1stoepsovingthetumtitErgindicitleftwofbcanthenealenterpretedtotheridenQuanythiinequalito.mprincipletheoryisOneathecdicultonsequ(thateappnceinof1])theasRiesz-Thorinningivterpaolationestimatetheoremtheandtititecancat-map,bquanethstatedmeasuresasoffollothewsct.[2],RIVI?RE[12]:APSTheoremthis1.1hoice.(Maassen-Unk)kno.thatLgoetdaure-NonnaandtoFphenomenatoquanbceliktwotheseHilbisertlospatacyes.dels.LoretoneThanksthebtoemoanlunitarygivopbertheatortizedonasso.toofh.pSuppolicoseMt-onenCAexpORvthatoonapuntoruLyMEASURESisOFaiENTRmpliedb[5].ydynamicaltheThanksuse[11],ofroanQuanenUniquetropicouncertainytouldyeprincipleequivduettogetMaassenofandinUnke[12].yThis12A SL(2;Z) T

+
h ( ;A ) ;KS
2
A+
1 1 +02 2
= (x;)
2 2 2R T R
0 0 0 0((x;); (x; )) = x x : R
0 2S (R)
{((x; );(Q;P))
~U (x;) :=e ;~
@ ~(Q )(x) :=x (x) (P )(x) := (x){ @x
0 2S (R) L (R)
{ 0 00 0 (x; ); x ; 0 0( ( ))2~U (x;)U (x; ) =e U (x +x; + ):~ ~ ~
2U (q;p) (q;p)2 Z~
= ( ; )1 2
2 2[0; 2[ (q;p)2Z
{ q+{ p1 2U (q;p) =e :~
{ 0 2 R e
0S (R)
2 H () N 2~N = 1N
H () 0 N2N dimH () = NN N
q p2(q;p)2Z U ( ; )H () =H ()~ N NN N
q p 2U ( ; ) (q;p)2Z~ N N
byhoiceonlysatisesBonecvhi-desemiclassicBi?vretum[4]oidanddicitbwingyolicFtoaure-Nonnenmacertherin[9].reasonableA.softrongerterestresultciatethanrepresentheoremthe1.2wnon.theviorensystemtropmakyoofassosemiclassicalariancemeasuresgiviswillgiovbenthat,bstateyisBroeoksforinstate.[7].toSo,denotedthisThenoteofsInhoulfordinstance)notandobtainedbeidenseendiereastiatnewdicultiesresultthebutphaseaskindaranslatisimplicationproofmapsAnanthetharaman-theNonnenmacphasher'seproofoftinandthenotesetting,ofhecquanLyapunovtizedwecat-mapsmeandalasedaandnewqupactsoinprevioustquanoftheiviewbondel:thecanmethofordsedevaeloptoed.inarise[2].questions2.ertQuantumhaoticmechanicsaonthatthefortoryuspartitionIntthisasection,wwIneappwillebrieytionedrecallmasomeofactstumabtooutitquanrequiretizationinofthelinearopsymplecticthattoraleautomophisms.alsoWzedemeansfollotumwvthepapproacashspace.andthis,notationsetusedthebayanBoprouaszeouinaalandwritingdeOurBi?vrequaninshould[5]theandonentwpewherrefertotheereadercantoedittforallofurtherfordetails,andthereferences.theInnthisstatesnote,inonsatisfysultsarere-epreviousstatesto-toruscomparedsetwillandenotewherea1pthisoinwingteoLemmafythenotphaseespacei(i.e.givecbgoalorsettingcanetorusl)haosandofthethethefusualvsybmhighlypelHimeasuresemecticforamisonachofGABRIELmeasurestit,ofi.e.ofsemiclassicalcofnyquitetropeenethecular,onparresult[2].Thisearedsharp.hatisandmveabrmentheojorpreviousthetheTindeneoundquanbstatesInciatedthethecasespace,ofistheto,atheofstatevthatunderystsaontumeratorsparticleaisofaatempforeredtodistributionbutitcat-ar,tiparticulItInthatmeasure.quanalstatessicha.eThen,samephaseeriospaceytranslationtheopeeratorsTactingdoonwthislspacequancancasebineprodenedvideaseselemensemiclaofatosnotiwLebwmeasurerequiretheformaps,lcatthistizedinquaninof.settingathetuminofthatcedkvfollowithcondition:proexpBi?vreositivedetheandeherhaveNonnenmacit,aure,dFassothatasurunderlineItandberemarkWthat.dierenlyfromiisasweas,(more)anycomputedThen,e.btoruscanon(2)tinsameoundabtum.TheItincthatanmatrixbthatetheoutlinedconditionsthatsaiditbistherelatedtumtoontheerbstan-anddardrrepresenistationhyponeeretwLlo.2.theTheoremthatmoof.thefolloHeilemmasbeshon[5]:b2.1.erg(1)groupinequalitandisthatritducisdunitaryofonprosoe(9)).(preciselythisprinciplease,yis.OurStandard[5]factsthisabMoroutover,thisalcaninbnaturallyecfoundquanin,theusualbandoorokybpropy(AnosoFehaollandclassical[10].cInofparticular,theritiscanuniqueblbestructurshosuchwndelthatosemiclassical(3)tvidescertainoun-unitarytropiceenprtheRIVI?REinof2aquan.H ()N
S(R) H ()N
X
Nnm {( n m)1 2S() := ( 1) e U (n;m):~
2(n;m)2Z
S(R)
0 0 0j ; i := S()ji j;i := S()ji ji ji S(R)
2L (R) H ()N
X
0 Nnm {( n m) 01 2 2h ; j;i = ( 1) e hjU (n;m)ji :H () ~ L (R)N
2n;m2Z
2T
1 2N C T
H () fN
(0; 0)
1
4 21 x
2~j0i(x) := e :
~
22R ji :=U ()j0i~p
2 2L (R) ~ R
2R H ()N
j ; i :=S()ji:
p
2 ~ T
1 2f C (T )
Z
d AW (f) := f()j ; ih ; j :
2 2~T
AW AWf (f) = (f)
Z
d AW (1) = = j ; ih ; j : H ()N
2 2~T
2T A
A SL(2;Z)
A
A SL(2;R)
A
2 182R ; M(A)U ()M(A) =U (A ):~ ~
2M(A) A L (R)
A 2 Sp(2;Z) N 2 N
22 [0; 2[
M(A)H () =H ():N N
M (A) M(A) H () N
w AW 1k (f) (f)k =O (N ) L(H ()) fN
atstateositionantumtewhic.hmatrixishcenmakteredwintizecoherentationonfolloaquanballFofdenesradiusrtranslatedthetheQUANTIZEDofwtheonphcana[10].sopedenespacewhice.nb.proUsingetheosHoeertcoherennttizestates,eyloneScanwconstructlikaassopi.e.ositivtoeusingquanscalartizationdeneson(upthesatisestorusinmiit,miceriokingistheciateanunitaryti-Wicassok[5]:quanhyptizationonon(Scdeastewing[5].clearTrovdoisthis,T-MAPSwator.etopromeasuresject2therelatedcoherenotMEASURESWaasOFtheaHilbwerttospacedynamittooinphasepaatassotered.:ecenmetaplecticstateductstwcoherenfact,theeacdenetheeawwhictization,lquanThen,thisforeedescribimpulsion.Thisindenesisstatesacenalledteredpropagatorintooisoneratoratoballitofshoradius2Tetization.olicof:theartzphasewspace,quanatksurjection.whicThesuchantheti-WicitkonequanevtizationexplicitofthenanofobservstructureableTheti-WicItinopantheseheallottrogofntheconsidericat-mapsiscandeneditasthefollotizawsCA2OR:SICALOpMICLyThisbasedohievonacmanifold,eebouldcanesquanitheThc[5].ciatederyandevtheforspace,hdeneeacquanonprogatoreratorciatedoponanThisciatesbassodonethatthecedurerepresenItofsatisesprothateenforetaInsymitbforolhprob,uniqueOptotizationphase)quaneratorahconstructinkcanwingOnethe..OpandonandfunctionscanarewablesUsingvandandpthatdicthepquanhtizatistateoniniscnonnegativthee.tumItassoalsodsatisesstateaItresolutionanofopidenontiteacyciatespropandertcanye[5]wnOpLemmar.2.eorobsachclassicalerbIdjectortorus,Thisthetooffunctions)caseandtheachInh.ofeltherlevexistsenergyleeryoneevaforhspacemapphasellothethattofciatedusingassomorespaceseertcanF,orethewcat-map[5].moerydel,denotesthetheclassicalestrictionevnotolutiononontolbHilbHi3is.givisenunitaryberyAlladenitiodsiwscreteintimeducemapnotionofsemiclassical(whereforfamilyquanisdan[5]:hOneypshoerbthatolicismatrixtoiWnquanaticonstructedneOpWof(4)Fholds:Op).stateAsAoinEOPYdenespcaseofttheShamiltonianinthestatesENTRonA SL(2;Z)
2(T ;A)
Z 2
1 2 N N AW N N8f2C (T ;C); (f) :=h j (f)j i = f()N j ; d ; H () N H ()N2T
N( ) M (A) H ()N N
2T A
A SL(2;Z) a
1 2C (T )
t AW t AW t 2 t+8t2R; M (A) (f)M (A) = (fA ) +O (e N); f
f +
A := supflogjj :2 (A)g+

1
m (N) := logN ;E
2+
N
A
N N( ) M (A) H () N N

1 2 N t N8f2C (T ;C); 8jtjm (N); (fA ) = (f) +o (1);E f;
f
M (A)N k
AWH () (f) = lim h j (f)j iN k!+1 N N H ()k k k Nk
k
Q < 1=100
(x) := x logx 0 log 0 = 0
Q
X1 m (m 1)h ( ;A; Q) := lim A Q \A Q ;KS m m 1
m!+1 2m
jj=2m
f1; ;Kg K Qj
K(P )i i=1
1 2C (T ; [0; 1]) 2
2T
KX
2 2
82T ; P () = 1:i
i=1
N
P
X
N 2 N 2h ( ;P) := (P ) log (P );2m N
jj=2m
0
measursmalldened(eysc.SoThen,offorv-Sinaieveryer.punderositivequan.this,ertoneofhaesalmost(5)sinsmallmatrixwhereoliceverbtheypothhsmoanotheeeb(6)LetLyapunov2.3.wofaythemeasuresofonaretheytorushas.eTheywhereareof-inevvarianrelatedDenitionthettmeasuresforusingesthebRIVI?REysfolloablesOpuewingdiameterGABRIELtheEgoroofvinpropmeasureeMimicrentquany:withTheoremthe2.4emainderwhersetetropthemctheonstantbin[14]rdenedemainderthedepparticular,endsumonlyositionis(Egoroueandofvform.a3.EhrenfestPrtimesoofinofthetheorempropagation1.2isW3.1.etropicconsiderprinciple.aissemiclmasservsicthealemeasuredeningOppartitionassoositionciatedoftowa.sequencecoforteigenthanvthatectorswingpropoferteig

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents