Simulation de variables aléatoires continues Méthode de la réciproque Méthode du rejet
Plan
4
3
4/0
2
Introduction
Simulation de variables aléatoires discrètes
5
Combinaisons linéaires de lois
1
Lois particulières
-Uniancyité2vers
mySa(IT.)NCES-1Mlumioita
Simulation de variables aléatoires discrètes
2
reisnUvicn-ysnaN
5
Lois particulières
1
Introduction
Simulation de variables aléatoires continues Méthode de la réciproque Méthode du rejet
3
4
Combinaisons linéaires de lois
40
Plan
té3/
Exemple
Problème simple sans solution explicite: Une tâche informatique peut se représenter par des v. a. Tj, avecj=1 5 etTj∼ E(λj)indépendantes T=min{T1+T2T3+T4+T2T3+T5} Dans ce cas,E[T]ne peut se calculer explicitement
Samy.TI(CE)N1M-SimulaitonsNancy-Université4/04
Exemple (2)
Calcul approché deE[T]: On prendNgrand (104, 105) N≡nombre d’expériences indépendantes Expérience Numéroi: On simuleT1i T5ide lois exponentielles i Ti=min{T1i+T2iT3i+T4i+T2iT3+T5i} i AlorsE[T]'1NPNi=1T
aSym.TI(CE)NM1-iSumalitnosNancy-Université5/40
Comment simuler une v.a.Xde loi donnée? Vitesse de convergence pour le calcul deE[X]? Application au calcul deRDf(x)dx
Questions générales
Remarque: On supposera que l’on sait simulerU([01]) ,→Fonctionrand